{"title":"低相似性蛋白的高效动态分析用于结构分类预测","authors":"M. Zervou, E. Doutsi, P. Pavlidis, P. Tsakalides","doi":"10.23919/Eusipco47968.2020.9287619","DOIUrl":null,"url":null,"abstract":"Prediction of protein structural classes from amino acid sequences is a challenging problem as it is profitable for analyzing protein function, interactions, and regulation. The majority of existing prediction methods for low-homology sequences utilize numerous amount of features and require an exhausting search for optimal parameter tuning. To address this problem, this work proposes a novel self-tuned architecture for feature extraction by modeling directly the inherent dynamics of the data in higher-dimensional phase space via chaos game representation (CGR) and generalized multidimensional recurrence quantification analysis (GmdRQA). Experimental evaluation on a real benchmark dataset demonstrates the superiority of the herein proposed architecture when compared against the state-of-the-art unidimensional RQA taking under consideration that our method achieves similar performance in a data-driven manner with a smaller computational cost.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"55 1","pages":"1328-1332"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Dynamic Analysis of Low-similarity Proteins for Structural Class Prediction\",\"authors\":\"M. Zervou, E. Doutsi, P. Pavlidis, P. Tsakalides\",\"doi\":\"10.23919/Eusipco47968.2020.9287619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of protein structural classes from amino acid sequences is a challenging problem as it is profitable for analyzing protein function, interactions, and regulation. The majority of existing prediction methods for low-homology sequences utilize numerous amount of features and require an exhausting search for optimal parameter tuning. To address this problem, this work proposes a novel self-tuned architecture for feature extraction by modeling directly the inherent dynamics of the data in higher-dimensional phase space via chaos game representation (CGR) and generalized multidimensional recurrence quantification analysis (GmdRQA). Experimental evaluation on a real benchmark dataset demonstrates the superiority of the herein proposed architecture when compared against the state-of-the-art unidimensional RQA taking under consideration that our method achieves similar performance in a data-driven manner with a smaller computational cost.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"55 1\",\"pages\":\"1328-1332\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Dynamic Analysis of Low-similarity Proteins for Structural Class Prediction
Prediction of protein structural classes from amino acid sequences is a challenging problem as it is profitable for analyzing protein function, interactions, and regulation. The majority of existing prediction methods for low-homology sequences utilize numerous amount of features and require an exhausting search for optimal parameter tuning. To address this problem, this work proposes a novel self-tuned architecture for feature extraction by modeling directly the inherent dynamics of the data in higher-dimensional phase space via chaos game representation (CGR) and generalized multidimensional recurrence quantification analysis (GmdRQA). Experimental evaluation on a real benchmark dataset demonstrates the superiority of the herein proposed architecture when compared against the state-of-the-art unidimensional RQA taking under consideration that our method achieves similar performance in a data-driven manner with a smaller computational cost.