干扰素α -2b与固体脂质纳米颗粒结合的毒性和生物活性评价

D. Doroud, Marjan Khatami, Nasim Rahmani, M. Shahali, Ariana Alavi, M. Hedayati
{"title":"干扰素α -2b与固体脂质纳米颗粒结合的毒性和生物活性评价","authors":"D. Doroud, Marjan Khatami, Nasim Rahmani, M. Shahali, Ariana Alavi, M. Hedayati","doi":"10.52547/iau.32.3.246","DOIUrl":null,"url":null,"abstract":"Background : Interferon (IFN) are small proteins that belong to the cytokine family and may interfere with viral infections and some cancers. There are many studies focused on the PEGylated interferon’s bioactivity. In this study, we used solid lipid nanoparticles (SLNs) to produce new drug formulations, with the aim of reducing costs, increasing effectiveness, and also reducing side effects, and the biological effects of the formulation and comparing the obtained results with the interferon alpha-2b and PEGylated interferon alpha-2b. Materials and methods : In this study, we evaluateed the toxicity and bioactivity of three formulations: interferon alpha-2b, PEGylated interferon alpha-2b, and encapsulated interferon alpha-2b with solid lipid nanoparticles using the MTT method and cytopathic inhibition assay (CPE), respectively. Results : The toxic effects of interferon encapsulated solid lipid nanoparticle (SLN-INF) was comparable with interferon and PEGylated interferon. In addition, empty solid lipid nanoparticles had no toxic effects on cells. The SLN-IFN showed higher bioactivity than the other samples tested (interferon alpha-2b, PEGylated interferon alpha-2b) and maintained its bioactivity over time. Conclusion : The results of this study indicate that interferon alpha-2b conjugated with solid lipid nanoparticles is a capable formulation with sufficient bioactivity and acceptable toxicity as compared to PEGylated interferon and can be applied in clinical trials in future studies.","PeriodicalId":18492,"journal":{"name":"MEDICAL SCIENCES JOURNAL","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toxicity and bioactivity evaluation of interferon alpha-2b conjugated with solid lipid nanoparticles\",\"authors\":\"D. Doroud, Marjan Khatami, Nasim Rahmani, M. Shahali, Ariana Alavi, M. Hedayati\",\"doi\":\"10.52547/iau.32.3.246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background : Interferon (IFN) are small proteins that belong to the cytokine family and may interfere with viral infections and some cancers. There are many studies focused on the PEGylated interferon’s bioactivity. In this study, we used solid lipid nanoparticles (SLNs) to produce new drug formulations, with the aim of reducing costs, increasing effectiveness, and also reducing side effects, and the biological effects of the formulation and comparing the obtained results with the interferon alpha-2b and PEGylated interferon alpha-2b. Materials and methods : In this study, we evaluateed the toxicity and bioactivity of three formulations: interferon alpha-2b, PEGylated interferon alpha-2b, and encapsulated interferon alpha-2b with solid lipid nanoparticles using the MTT method and cytopathic inhibition assay (CPE), respectively. Results : The toxic effects of interferon encapsulated solid lipid nanoparticle (SLN-INF) was comparable with interferon and PEGylated interferon. In addition, empty solid lipid nanoparticles had no toxic effects on cells. The SLN-IFN showed higher bioactivity than the other samples tested (interferon alpha-2b, PEGylated interferon alpha-2b) and maintained its bioactivity over time. Conclusion : The results of this study indicate that interferon alpha-2b conjugated with solid lipid nanoparticles is a capable formulation with sufficient bioactivity and acceptable toxicity as compared to PEGylated interferon and can be applied in clinical trials in future studies.\",\"PeriodicalId\":18492,\"journal\":{\"name\":\"MEDICAL SCIENCES JOURNAL\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MEDICAL SCIENCES JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/iau.32.3.246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MEDICAL SCIENCES JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/iau.32.3.246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:干扰素(IFN)是细胞因子家族的小蛋白,可能干扰病毒感染和某些癌症。聚乙二醇化干扰素的生物活性是目前研究的热点。在本研究中,我们使用固体脂质纳米颗粒(SLNs)生产新的药物配方,目的是降低成本,提高疗效,减少副作用,以及配方的生物学效应,并将所获得的结果与干扰素α -2b和聚乙二醇化干扰素α -2b进行比较。材料和方法:在本研究中,我们分别采用MTT法和细胞病变抑制试验(CPE)评估了干扰素α -2b、聚乙二醇化干扰素α -2b和固体脂质纳米颗粒包封干扰素α -2b三种制剂的毒性和生物活性。结果:干扰素包封固体脂质纳米颗粒(SLN-INF)的毒性作用与干扰素和聚乙二醇化干扰素相当。此外,空固体脂质纳米颗粒对细胞无毒性作用。SLN-IFN的生物活性高于其他测试样品(干扰素α -2b,聚乙二醇化干扰素α -2b),并随时间保持其生物活性。结论:本研究结果表明,与聚乙二醇化干扰素相比,α -2b结合固体脂质纳米颗粒的干扰素具有足够的生物活性和可接受的毒性,可以在未来的研究中用于临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toxicity and bioactivity evaluation of interferon alpha-2b conjugated with solid lipid nanoparticles
Background : Interferon (IFN) are small proteins that belong to the cytokine family and may interfere with viral infections and some cancers. There are many studies focused on the PEGylated interferon’s bioactivity. In this study, we used solid lipid nanoparticles (SLNs) to produce new drug formulations, with the aim of reducing costs, increasing effectiveness, and also reducing side effects, and the biological effects of the formulation and comparing the obtained results with the interferon alpha-2b and PEGylated interferon alpha-2b. Materials and methods : In this study, we evaluateed the toxicity and bioactivity of three formulations: interferon alpha-2b, PEGylated interferon alpha-2b, and encapsulated interferon alpha-2b with solid lipid nanoparticles using the MTT method and cytopathic inhibition assay (CPE), respectively. Results : The toxic effects of interferon encapsulated solid lipid nanoparticle (SLN-INF) was comparable with interferon and PEGylated interferon. In addition, empty solid lipid nanoparticles had no toxic effects on cells. The SLN-IFN showed higher bioactivity than the other samples tested (interferon alpha-2b, PEGylated interferon alpha-2b) and maintained its bioactivity over time. Conclusion : The results of this study indicate that interferon alpha-2b conjugated with solid lipid nanoparticles is a capable formulation with sufficient bioactivity and acceptable toxicity as compared to PEGylated interferon and can be applied in clinical trials in future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational analysis, design and expression of hybrid antibody in Single Chain Fragment Variable (scFv) form for identifying surface antigen factor H binding protein (fHbp) of Neisseria meningitidis The effect of laughter therapy on the fatigue and anxiety of mothers of children admitted to the psychiatric departments of Tehran Hospitals: an experimental study Toxicity assessment of high fructose corn syrup-55: a repeated dose oral toxicity study in uterus and ovaries of female rats Molecular detection of human parechovirus by real-time PCR in cerebrospinal fluid samples of pediatric patients with meningitis and meningoencephalitis Study and comparison of growth and development of the first year of life in preterm and term infants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1