基于k近邻和决策树的软件故障预测混合方法

Manpreet Manpreet, J. Chhabra
{"title":"基于k近邻和决策树的软件故障预测混合方法","authors":"Manpreet Manpreet, J. Chhabra","doi":"10.48129/kjs.18331","DOIUrl":null,"url":null,"abstract":"Software testing is a very important part of the software development life cycle to develop reliable and bug-free software but it consumes a lot of resources like development time, cost, and effort. Researchers have developed many techniques to get prior knowledge of fault-prone modules so that testing time and cost can be reduced. In this research article, a hybrid approach of distance-based pruned classification and regression tree (CART) and k- nearest neighbors is proposed to improve the performance of software fault prediction. The proposed technique is tested on eleven medium to large scale software fault prediction datasets and performance is compared with decision tree classifier, SVM and its three variations, random forest, KNN, and classification and regression tree. Four performance metrics are used for comparison purposes that are accuracy, precision, recall, and f1-score. Results show that our proposed approach gives better performance for accuracy, precision, and f1-score performance metrics. The second experiment shows a significant amount of running time improvement over the standard k-nearest neighbor algorithm.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid approach based on k-nearest neighbors and decision tree for software fault prediction\",\"authors\":\"Manpreet Manpreet, J. Chhabra\",\"doi\":\"10.48129/kjs.18331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software testing is a very important part of the software development life cycle to develop reliable and bug-free software but it consumes a lot of resources like development time, cost, and effort. Researchers have developed many techniques to get prior knowledge of fault-prone modules so that testing time and cost can be reduced. In this research article, a hybrid approach of distance-based pruned classification and regression tree (CART) and k- nearest neighbors is proposed to improve the performance of software fault prediction. The proposed technique is tested on eleven medium to large scale software fault prediction datasets and performance is compared with decision tree classifier, SVM and its three variations, random forest, KNN, and classification and regression tree. Four performance metrics are used for comparison purposes that are accuracy, precision, recall, and f1-score. Results show that our proposed approach gives better performance for accuracy, precision, and f1-score performance metrics. The second experiment shows a significant amount of running time improvement over the standard k-nearest neighbor algorithm.\",\"PeriodicalId\":49933,\"journal\":{\"name\":\"Kuwait Journal of Science & Engineering\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48129/kjs.18331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.18331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

软件测试是软件开发生命周期中非常重要的一部分,用于开发可靠且无缺陷的软件,但它消耗了大量的资源,如开发时间、成本和精力。研究人员已经开发了许多技术来获取易发故障模块的先验知识,以减少测试时间和成本。本文提出了一种基于距离的剪枝分类与回归树(CART)和k近邻的混合方法来提高软件故障预测的性能。在11个大中型软件故障预测数据集上进行了测试,并与决策树分类器、支持向量机及其三种变体、随机森林、KNN和分类回归树进行了性能比较。用于比较的四个性能指标是准确性、精度、召回率和f1-score。结果表明,我们提出的方法在准确性、精密度和f1分数性能指标方面具有更好的性能。第二个实验显示,与标准的k近邻算法相比,该算法的运行时间得到了显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid approach based on k-nearest neighbors and decision tree for software fault prediction
Software testing is a very important part of the software development life cycle to develop reliable and bug-free software but it consumes a lot of resources like development time, cost, and effort. Researchers have developed many techniques to get prior knowledge of fault-prone modules so that testing time and cost can be reduced. In this research article, a hybrid approach of distance-based pruned classification and regression tree (CART) and k- nearest neighbors is proposed to improve the performance of software fault prediction. The proposed technique is tested on eleven medium to large scale software fault prediction datasets and performance is compared with decision tree classifier, SVM and its three variations, random forest, KNN, and classification and regression tree. Four performance metrics are used for comparison purposes that are accuracy, precision, recall, and f1-score. Results show that our proposed approach gives better performance for accuracy, precision, and f1-score performance metrics. The second experiment shows a significant amount of running time improvement over the standard k-nearest neighbor algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science & Engineering
Kuwait Journal of Science & Engineering MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
Synthesis of ternary nanocomposites of GO–MnO2@Tau and GO-MnO2@CA for efficient removal of dyes Modulational Stability Analysis of Ion Temperature Gradient Mode in Electron-ion Plasma Hydrazone bimetallic complex: synthesis, characterization, in silico and biological evaluation targeting breast and lung cancer cells’ G-quadruplex DNA Modeling of thermodynamic properties of Fe-Ni-C, Fe-Cr-C alloys using computational approach Carbon nanodots-based C-dips for rapid colorimetric detection of clinically important metal ions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1