利用相关视频和相关度支持向量机改进事件检测

Christos Tzelepis, Nikolaos Gkalelis, V. Mezaris, Y. Kompatsiaris
{"title":"利用相关视频和相关度支持向量机改进事件检测","authors":"Christos Tzelepis, Nikolaos Gkalelis, V. Mezaris, Y. Kompatsiaris","doi":"10.1145/2502081.2502176","DOIUrl":null,"url":null,"abstract":"In this paper, a new method that exploits related videos for the problem of event detection is proposed, where related videos are videos that are closely but not fully associated with the event of interest. In particular, the Weighted Margin SVM formulation is modified so that related class observations can be effectively incorporated in the optimization problem. The resulting Relevance Degree SVM is especially useful in problems where only a limited number of training observations is provided, e.g., for the EK10Ex subtask of TRECVID MED, where only ten positive and ten related samples are provided for the training of a complex event detector. Experimental results on the TRECVID MED 2011 dataset verify the effectiveness of the proposed method.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Improving event detection using related videos and relevance degree support vector machines\",\"authors\":\"Christos Tzelepis, Nikolaos Gkalelis, V. Mezaris, Y. Kompatsiaris\",\"doi\":\"10.1145/2502081.2502176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new method that exploits related videos for the problem of event detection is proposed, where related videos are videos that are closely but not fully associated with the event of interest. In particular, the Weighted Margin SVM formulation is modified so that related class observations can be effectively incorporated in the optimization problem. The resulting Relevance Degree SVM is especially useful in problems where only a limited number of training observations is provided, e.g., for the EK10Ex subtask of TRECVID MED, where only ten positive and ten related samples are provided for the training of a complex event detector. Experimental results on the TRECVID MED 2011 dataset verify the effectiveness of the proposed method.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种利用相关视频来解决事件检测问题的新方法,其中相关视频是指与感兴趣的事件密切但不完全相关的视频。特别是对加权余量支持向量机的公式进行了改进,使相关的类观测值能够有效地纳入到优化问题中。所得到的关联度支持向量机在只提供有限数量的训练观测值的问题中特别有用,例如,对于TRECVID MED的EK10Ex子任务,其中只提供十个正样本和十个相关样本来训练复杂事件检测器。在TRECVID MED 2011数据集上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving event detection using related videos and relevance degree support vector machines
In this paper, a new method that exploits related videos for the problem of event detection is proposed, where related videos are videos that are closely but not fully associated with the event of interest. In particular, the Weighted Margin SVM formulation is modified so that related class observations can be effectively incorporated in the optimization problem. The resulting Relevance Degree SVM is especially useful in problems where only a limited number of training observations is provided, e.g., for the EK10Ex subtask of TRECVID MED, where only ten positive and ten related samples are provided for the training of a complex event detector. Experimental results on the TRECVID MED 2011 dataset verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Summary abstract for the 1st ACM international workshop on personal data meets distributed multimedia πLDA: document clustering with selective structural constraints Massive-scale multimedia semantic modeling OTMedia: the French TransMedia news observatory Orchestration: tv-like mixing grammars applied to video-communication for social groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1