使用自然语言处理的阿片类药物治疗方案中患者痛苦的比较分析

Fatemeh Shah-Mohammadi, Wanting Cui, K. Bachi, Yasmin L. Hurd, J. Finkelstein
{"title":"使用自然语言处理的阿片类药物治疗方案中患者痛苦的比较分析","authors":"Fatemeh Shah-Mohammadi, Wanting Cui, K. Bachi, Yasmin L. Hurd, J. Finkelstein","doi":"10.5220/0010976700003123","DOIUrl":null,"url":null,"abstract":"Psychiatric and medical disorders, social and family environment, and legal distress are important determinants of distress that impact the effectiveness of the treatment in opioid treatment program (OTP). This information is not routinely captured in electronic health record, but may be found in clinical notes. This study aims to explore the feasibility and effectiveness of natural language processing (NLP) strategy for identifying legal, social, mental and medical determinates of distress along with emotional pain rooted in family environment from clinical narratives of patients with opioid addiction, and then using this information to find its impact on OTP outcomes. Analysis in this study showed that mental and legal distress significantly impact the result of the treatment in OTP.","PeriodicalId":72386,"journal":{"name":"Biomedical engineering systems and technologies, international joint conference, BIOSTEC ... revised selected papers. BIOSTEC (Conference)","volume":"1 1","pages":"319-326"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Analysis of Patient Distress in Opioid Treatment Programs using Natural Language Processing\",\"authors\":\"Fatemeh Shah-Mohammadi, Wanting Cui, K. Bachi, Yasmin L. Hurd, J. Finkelstein\",\"doi\":\"10.5220/0010976700003123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Psychiatric and medical disorders, social and family environment, and legal distress are important determinants of distress that impact the effectiveness of the treatment in opioid treatment program (OTP). This information is not routinely captured in electronic health record, but may be found in clinical notes. This study aims to explore the feasibility and effectiveness of natural language processing (NLP) strategy for identifying legal, social, mental and medical determinates of distress along with emotional pain rooted in family environment from clinical narratives of patients with opioid addiction, and then using this information to find its impact on OTP outcomes. Analysis in this study showed that mental and legal distress significantly impact the result of the treatment in OTP.\",\"PeriodicalId\":72386,\"journal\":{\"name\":\"Biomedical engineering systems and technologies, international joint conference, BIOSTEC ... revised selected papers. BIOSTEC (Conference)\",\"volume\":\"1 1\",\"pages\":\"319-326\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical engineering systems and technologies, international joint conference, BIOSTEC ... revised selected papers. BIOSTEC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010976700003123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical engineering systems and technologies, international joint conference, BIOSTEC ... revised selected papers. BIOSTEC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010976700003123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

精神和医学疾病、社会和家庭环境以及法律困扰是影响阿片类药物治疗计划(OTP)治疗有效性的困扰的重要决定因素。这些信息通常不会在电子健康记录中记录,但可以在临床记录中找到。本研究旨在探讨自然语言处理(NLP)策略从阿片类药物成瘾患者的临床叙述中识别法律、社会、精神和医学决定因素以及根植于家庭环境的情绪痛苦的可行性和有效性,然后利用这些信息发现其对OTP结果的影响。本研究的分析表明,精神和法律上的痛苦显著影响OTP治疗的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis of Patient Distress in Opioid Treatment Programs using Natural Language Processing
Psychiatric and medical disorders, social and family environment, and legal distress are important determinants of distress that impact the effectiveness of the treatment in opioid treatment program (OTP). This information is not routinely captured in electronic health record, but may be found in clinical notes. This study aims to explore the feasibility and effectiveness of natural language processing (NLP) strategy for identifying legal, social, mental and medical determinates of distress along with emotional pain rooted in family environment from clinical narratives of patients with opioid addiction, and then using this information to find its impact on OTP outcomes. Analysis in this study showed that mental and legal distress significantly impact the result of the treatment in OTP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biomedical Engineering Systems and Technologies: 15th International Joint Conference, BIOSTEC 2022, Virtual Event, February 9–11, 2022, Revised Selected Papers Comparative Analysis of Patient Distress in Opioid Treatment Programs using Natural Language Processing The h-ANN Model: Comprehensive Colonoscopy Concept Compilation using Combined Contextual Embeddings TAX-Corpus: Taxonomy based Annotations for Colonoscopy Evaluation DeIDNER Model: A Neural Network Named Entity Recognition Model for Use in the De-identification of Clinical Notes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1