Y. Taoka, Kohei Kawabata, P. Hemthavy, Seungman Choi, Kunio Takahashi, S. Saito
{"title":"光刻制束阵组件双极静电卡盘的研制","authors":"Y. Taoka, Kohei Kawabata, P. Hemthavy, Seungman Choi, Kunio Takahashi, S. Saito","doi":"10.20965/ijat.2022.p0471","DOIUrl":null,"url":null,"abstract":"This technical paper demonstrates the influence of the probe-tip surface smoothness of a bipolar electrostatic chuck (ESC) on electrostatic force. ESC, which has a silicon-based beam-array microstructure, aims to pick and place a dielectric object with a curved surface owing to the compliance of its elastically deformable beams. The ESC was fabricated using a lithography technique, specifically deep reactive ion etching (DRIE), to smooth the surface of the beam tip. The surface roughness of the beam tips was observed using a field-emission scanning electron microscope (FE-SEM), and the adhesional force was experimentally evaluated. The results show that by the smoothing process, the adhesional force per unit area is significantly increased compared to the previous study reported by Choi (one of the authors). This suggests that the proposed bipolar ESC device has great potential for use in various industries.","PeriodicalId":13583,"journal":{"name":"Int. J. Autom. Technol.","volume":"24 1","pages":"471-477"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Bipolar Electrostatic Chuck with a Beam-Array Assembly Fabricated by Lithography\",\"authors\":\"Y. Taoka, Kohei Kawabata, P. Hemthavy, Seungman Choi, Kunio Takahashi, S. Saito\",\"doi\":\"10.20965/ijat.2022.p0471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This technical paper demonstrates the influence of the probe-tip surface smoothness of a bipolar electrostatic chuck (ESC) on electrostatic force. ESC, which has a silicon-based beam-array microstructure, aims to pick and place a dielectric object with a curved surface owing to the compliance of its elastically deformable beams. The ESC was fabricated using a lithography technique, specifically deep reactive ion etching (DRIE), to smooth the surface of the beam tip. The surface roughness of the beam tips was observed using a field-emission scanning electron microscope (FE-SEM), and the adhesional force was experimentally evaluated. The results show that by the smoothing process, the adhesional force per unit area is significantly increased compared to the previous study reported by Choi (one of the authors). This suggests that the proposed bipolar ESC device has great potential for use in various industries.\",\"PeriodicalId\":13583,\"journal\":{\"name\":\"Int. J. Autom. Technol.\",\"volume\":\"24 1\",\"pages\":\"471-477\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Autom. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2022.p0471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Autom. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2022.p0471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Bipolar Electrostatic Chuck with a Beam-Array Assembly Fabricated by Lithography
This technical paper demonstrates the influence of the probe-tip surface smoothness of a bipolar electrostatic chuck (ESC) on electrostatic force. ESC, which has a silicon-based beam-array microstructure, aims to pick and place a dielectric object with a curved surface owing to the compliance of its elastically deformable beams. The ESC was fabricated using a lithography technique, specifically deep reactive ion etching (DRIE), to smooth the surface of the beam tip. The surface roughness of the beam tips was observed using a field-emission scanning electron microscope (FE-SEM), and the adhesional force was experimentally evaluated. The results show that by the smoothing process, the adhesional force per unit area is significantly increased compared to the previous study reported by Choi (one of the authors). This suggests that the proposed bipolar ESC device has great potential for use in various industries.