随机天气发生器(CLIGEN)非洲和南美洲20年气候参数化格网

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2022-11-18 DOI:10.1080/20964471.2022.2136610
A. Fullhart, G. Ponce-Campos, M. Meles, Ryan P. McGehee, G. Armendariz, P. S. Oliveira, Cristiano Das Neves Almeida, J. C. de Araújo, W. Nel, D. Goodrich
{"title":"随机天气发生器(CLIGEN)非洲和南美洲20年气候参数化格网","authors":"A. Fullhart, G. Ponce-Campos, M. Meles, Ryan P. McGehee, G. Armendariz, P. S. Oliveira, Cristiano Das Neves Almeida, J. C. de Araújo, W. Nel, D. Goodrich","doi":"10.1080/20964471.2022.2136610","DOIUrl":null,"url":null,"abstract":"ABSTRACT CLIGEN is a stochastic weather generator that creates statistically representative timeseries of daily and sub-daily point-scale weather variables from observed monthly statistics and other parameters. CLIGEN precipitation timeseries are used as climate input for various risk-assessment modelling applications as an alternative to observe long-term, high temporal resolution records. Here, we queried gridded global climate datasets (TerraClimate, ERA5, GPM-IMERG, and GLDAS) to estimate various 20-year climate statistics and obtain complete CLIGEN input parameter sets with coverage of the African and South American continents at 0.25 arc degree resolution. The estimation of CLIGEN precipitation parameters was informed by a ground-based dataset of >10,000 locations worldwide. The ground observations provided target values to fit regression models that downscale CLIGEN precipitation input parameters. Aside from precipitation parameters, CLIGEN’s parameters for temperature, solar radiation, etc. were in most cases directly calculated according to the original global datasets. Cross-validation for estimated precipitation parameters quantified errors that resulted from applying the estimation approach in a predictive fashion. Based on all training data, the RMSE was 2.23 mm for the estimated monthly average single-event accumulation and 4.70 mm/hr for monthly maximum 30-min intensity. This dataset facilitates exploration of hydrological and soil erosional hypotheses across Africa and South America.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"66 1","pages":"349 - 374"},"PeriodicalIF":4.2000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gridded 20-year climate parameterization of Africa and South America for a stochastic weather generator (CLIGEN)\",\"authors\":\"A. Fullhart, G. Ponce-Campos, M. Meles, Ryan P. McGehee, G. Armendariz, P. S. Oliveira, Cristiano Das Neves Almeida, J. C. de Araújo, W. Nel, D. Goodrich\",\"doi\":\"10.1080/20964471.2022.2136610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT CLIGEN is a stochastic weather generator that creates statistically representative timeseries of daily and sub-daily point-scale weather variables from observed monthly statistics and other parameters. CLIGEN precipitation timeseries are used as climate input for various risk-assessment modelling applications as an alternative to observe long-term, high temporal resolution records. Here, we queried gridded global climate datasets (TerraClimate, ERA5, GPM-IMERG, and GLDAS) to estimate various 20-year climate statistics and obtain complete CLIGEN input parameter sets with coverage of the African and South American continents at 0.25 arc degree resolution. The estimation of CLIGEN precipitation parameters was informed by a ground-based dataset of >10,000 locations worldwide. The ground observations provided target values to fit regression models that downscale CLIGEN precipitation input parameters. Aside from precipitation parameters, CLIGEN’s parameters for temperature, solar radiation, etc. were in most cases directly calculated according to the original global datasets. Cross-validation for estimated precipitation parameters quantified errors that resulted from applying the estimation approach in a predictive fashion. Based on all training data, the RMSE was 2.23 mm for the estimated monthly average single-event accumulation and 4.70 mm/hr for monthly maximum 30-min intensity. This dataset facilitates exploration of hydrological and soil erosional hypotheses across Africa and South America.\",\"PeriodicalId\":8765,\"journal\":{\"name\":\"Big Earth Data\",\"volume\":\"66 1\",\"pages\":\"349 - 374\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Earth Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/20964471.2022.2136610\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2022.2136610","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

CLIGEN是一个随机天气生成器,它根据观测到的月统计数据和其他参数创建具有统计代表性的日和次日点尺度天气变量时间序列。CLIGEN降水时间序列被用作各种风险评估建模应用的气候输入,作为观测长期高时间分辨率记录的替代方法。在此,我们查询了网格化的全球气候数据集(TerraClimate, ERA5, GPM-IMERG和GLDAS),以估计各种20年的气候统计数据,并获得了覆盖非洲和南美大陆的完整的CLIGEN输入参数集,分辨率为0.25角度。CLIGEN降水参数的估计是由全球超过10,000个地点的地面数据集提供的。地面观测提供了拟合回归模型的目标值,降低了CLIGEN降水输入参数的尺度。除了降水参数外,CLIGEN的温度、太阳辐射等参数大多是根据原始全球数据集直接计算的。对估计降水参数的交叉验证量化了以预测方式应用估计方法所产生的误差。基于所有训练数据,估计每月平均单事件累积的RMSE为2.23 mm,每月最大30分钟强度的RMSE为4.70 mm/hr。该数据集有助于探索非洲和南美洲的水文和土壤侵蚀假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gridded 20-year climate parameterization of Africa and South America for a stochastic weather generator (CLIGEN)
ABSTRACT CLIGEN is a stochastic weather generator that creates statistically representative timeseries of daily and sub-daily point-scale weather variables from observed monthly statistics and other parameters. CLIGEN precipitation timeseries are used as climate input for various risk-assessment modelling applications as an alternative to observe long-term, high temporal resolution records. Here, we queried gridded global climate datasets (TerraClimate, ERA5, GPM-IMERG, and GLDAS) to estimate various 20-year climate statistics and obtain complete CLIGEN input parameter sets with coverage of the African and South American continents at 0.25 arc degree resolution. The estimation of CLIGEN precipitation parameters was informed by a ground-based dataset of >10,000 locations worldwide. The ground observations provided target values to fit regression models that downscale CLIGEN precipitation input parameters. Aside from precipitation parameters, CLIGEN’s parameters for temperature, solar radiation, etc. were in most cases directly calculated according to the original global datasets. Cross-validation for estimated precipitation parameters quantified errors that resulted from applying the estimation approach in a predictive fashion. Based on all training data, the RMSE was 2.23 mm for the estimated monthly average single-event accumulation and 4.70 mm/hr for monthly maximum 30-min intensity. This dataset facilitates exploration of hydrological and soil erosional hypotheses across Africa and South America.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1