安全协同学习系统的联合功耗和时延最小化

Nguyen Thi Thanh Van, Vu Van Quang, Nguyen Cong Luong
{"title":"安全协同学习系统的联合功耗和时延最小化","authors":"Nguyen Thi Thanh Van, Vu Van Quang, Nguyen Cong Luong","doi":"10.15625/1813-9663/38/3/17094","DOIUrl":null,"url":null,"abstract":"This work investigates the model update security in a collaborative learning or federated learning network by using the covert communication. The CC uses the jamming signal and multiple friendly jammers (FJs) are deployed that can offer jamming services to the model owner, i.e., a base station (BS). To enable the BS to select the best FJ, i.e., the lowest cost FJ, a truthful auction is adopted. Then, a problem is formulated to optimize the jamming power, transmission power, and local accuracy. The objective is to minimize the training latency, subject to the security performance requirement and budget of the BS. To solve the non-convex problem, we adopt a Successive Convex Approximation algorithm. The simulation results reveals some interesting things. For example, the trustful auction reduces the jamming cost of the BS as the number of FJs increases.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JOINT POWER COST AND LATENCY MINIMIZATION FOR SECURE COLLABORATIVE LEARNING SYSTEM\",\"authors\":\"Nguyen Thi Thanh Van, Vu Van Quang, Nguyen Cong Luong\",\"doi\":\"10.15625/1813-9663/38/3/17094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates the model update security in a collaborative learning or federated learning network by using the covert communication. The CC uses the jamming signal and multiple friendly jammers (FJs) are deployed that can offer jamming services to the model owner, i.e., a base station (BS). To enable the BS to select the best FJ, i.e., the lowest cost FJ, a truthful auction is adopted. Then, a problem is formulated to optimize the jamming power, transmission power, and local accuracy. The objective is to minimize the training latency, subject to the security performance requirement and budget of the BS. To solve the non-convex problem, we adopt a Successive Convex Approximation algorithm. The simulation results reveals some interesting things. For example, the trustful auction reduces the jamming cost of the BS as the number of FJs increases.\",\"PeriodicalId\":15444,\"journal\":{\"name\":\"Journal of Computer Science and Cybernetics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Science and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/1813-9663/38/3/17094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/38/3/17094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在协作学习或联邦学习网络中使用隐蔽通信的模型更新安全性。CC使用干扰信号,部署多个友好干扰器(fj),可以向模型所有者(即基站(BS))提供干扰服务。为了使BS能够选择最佳FJ,即成本最低的FJ,采用了诚实拍卖的方式。然后,提出了一个优化干扰功率、传输功率和局部精度的问题。目标是在不影响BS安全性能要求和预算的情况下最小化训练延迟。为了解决非凸问题,我们采用了连续凸逼近算法。仿真结果揭示了一些有趣的事情。例如,随着fj数量的增加,信任拍卖降低了BS的干扰成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JOINT POWER COST AND LATENCY MINIMIZATION FOR SECURE COLLABORATIVE LEARNING SYSTEM
This work investigates the model update security in a collaborative learning or federated learning network by using the covert communication. The CC uses the jamming signal and multiple friendly jammers (FJs) are deployed that can offer jamming services to the model owner, i.e., a base station (BS). To enable the BS to select the best FJ, i.e., the lowest cost FJ, a truthful auction is adopted. Then, a problem is formulated to optimize the jamming power, transmission power, and local accuracy. The objective is to minimize the training latency, subject to the security performance requirement and budget of the BS. To solve the non-convex problem, we adopt a Successive Convex Approximation algorithm. The simulation results reveals some interesting things. For example, the trustful auction reduces the jamming cost of the BS as the number of FJs increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PROVING THE SECURITY OF AES BLOCK CIPHER BASED ON MODIFIED MIXCOLUMN AN IMPROVED INDEXING METHOD FOR QUERYING BIG XML FILES OHYEAH AT VLSP2022-EVJVQA CHALLENGE: A JOINTLY LANGUAGE-IMAGE MODEL FOR MULTILINGUAL VISUAL QUESTION ANSWERING THE VNPT-IT EMOTION TRANSPLANTATION APPROACH FOR VLSP 2022 TAEKWONDO POSE ESTIMATION WITH DEEP LEARNING ARCHITECTURES ON ONE-DIMENSIONAL AND TWO-DIMENSIONAL DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1