铜催化乙烯基芳烃硼羧化反应过程中硼辅助CO2活化的证据:CO2协同固定的合成模型

IF 3.8 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Comments on Inorganic Chemistry Pub Date : 2020-02-23 DOI:10.1080/02603594.2020.1726328
Notashia N. Baughman, Brian V. Popp
{"title":"铜催化乙烯基芳烃硼羧化反应过程中硼辅助CO2活化的证据:CO2协同固定的合成模型","authors":"Notashia N. Baughman, Brian V. Popp","doi":"10.1080/02603594.2020.1726328","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this comment, insights gained from density functional theory into the mechanism by which the Cu(I)-catalyzed boracarboxylation of vinyl arenes occurs with specific focus on the CO2 insertion step are presented. Preliminary calculations indicated a potential non-covalent interaction between boron and CO2 in the carboxylation transition state, implicating cooperative CO2 activation. A study of boron Lewis acidity was conducted through substitution of sp2 mono-boron substituents. An inverse correlation between boron valence deficiency (BVD) and the enthalpic barrier of CO2 insertion into the β-borylbenzyl-Cu(I) bond was revealed, supporting Lewis acid/base cooperativity between boron and the proximal oxygen of CO2 at the carboxylation insertion transition state. These findings suggest that future methodology development should consider strategic incorporation of similar Lewis acidic functionality to facilitate carboxylation of challenging substrates. Graphical abstract","PeriodicalId":10481,"journal":{"name":"Comments on Inorganic Chemistry","volume":"7 1","pages":"159 - 175"},"PeriodicalIF":3.8000,"publicationDate":"2020-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evidence of Boron Assistance for CO2 Activation during Copper-Catalyzed Boracarboxylation of Vinyl Arenes: A Synthetic Model for Cooperative Fixation of CO2\",\"authors\":\"Notashia N. Baughman, Brian V. Popp\",\"doi\":\"10.1080/02603594.2020.1726328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this comment, insights gained from density functional theory into the mechanism by which the Cu(I)-catalyzed boracarboxylation of vinyl arenes occurs with specific focus on the CO2 insertion step are presented. Preliminary calculations indicated a potential non-covalent interaction between boron and CO2 in the carboxylation transition state, implicating cooperative CO2 activation. A study of boron Lewis acidity was conducted through substitution of sp2 mono-boron substituents. An inverse correlation between boron valence deficiency (BVD) and the enthalpic barrier of CO2 insertion into the β-borylbenzyl-Cu(I) bond was revealed, supporting Lewis acid/base cooperativity between boron and the proximal oxygen of CO2 at the carboxylation insertion transition state. These findings suggest that future methodology development should consider strategic incorporation of similar Lewis acidic functionality to facilitate carboxylation of challenging substrates. Graphical abstract\",\"PeriodicalId\":10481,\"journal\":{\"name\":\"Comments on Inorganic Chemistry\",\"volume\":\"7 1\",\"pages\":\"159 - 175\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comments on Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/02603594.2020.1726328\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comments on Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/02603594.2020.1726328","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 3

摘要

在这篇评论中,从密度泛函理论中获得了对Cu(I)催化乙烯基芳烃硼羧化发生机理的见解,并特别关注了CO2插入步骤。初步计算表明,在羧基化过渡态,硼和CO2之间可能存在非共价相互作用,这意味着协同CO2活化。采用sp2单硼取代基对硼的路易斯酸性进行了研究。硼价缺位(BVD)与CO2插入β-硼基苄基- cu (I)键的焓势之间呈负相关,支持了在羧基化插入过渡态硼与CO2近端氧之间的Lewis酸/碱协同作用。这些发现表明,未来的方法发展应该考虑战略性地结合类似的刘易斯酸性功能,以促进具有挑战性的底物的羧基化。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evidence of Boron Assistance for CO2 Activation during Copper-Catalyzed Boracarboxylation of Vinyl Arenes: A Synthetic Model for Cooperative Fixation of CO2
ABSTRACT In this comment, insights gained from density functional theory into the mechanism by which the Cu(I)-catalyzed boracarboxylation of vinyl arenes occurs with specific focus on the CO2 insertion step are presented. Preliminary calculations indicated a potential non-covalent interaction between boron and CO2 in the carboxylation transition state, implicating cooperative CO2 activation. A study of boron Lewis acidity was conducted through substitution of sp2 mono-boron substituents. An inverse correlation between boron valence deficiency (BVD) and the enthalpic barrier of CO2 insertion into the β-borylbenzyl-Cu(I) bond was revealed, supporting Lewis acid/base cooperativity between boron and the proximal oxygen of CO2 at the carboxylation insertion transition state. These findings suggest that future methodology development should consider strategic incorporation of similar Lewis acidic functionality to facilitate carboxylation of challenging substrates. Graphical abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comments on Inorganic Chemistry
Comments on Inorganic Chemistry 化学-无机化学与核化学
CiteScore
9.00
自引率
1.90%
发文量
18
审稿时长
>12 weeks
期刊介绍: Comments on Inorganic Chemistry is intended as a vehicle for authoritatively written critical discussions of inorganic chemistry research. We publish focused articles of any length that critique or comment upon new concepts, or which introduce new interpretations or developments of long-standing concepts. “Comments” may contain critical discussions of previously published work, or original research that critiques existing concepts or introduces novel concepts. Through the medium of “comments,” the Editors encourage authors in any area of inorganic chemistry - synthesis, structure, spectroscopy, kinetics and mechanisms, theory - to write about their interests in a manner that is both personal and pedagogical. Comments is an excellent platform for younger inorganic chemists whose research is not yet widely known to describe their work, and add to the spectrum of Comments’ author profiles, which includes many well-established inorganic chemists.
期刊最新文献
Chemosensing Applications of Thiophene Derivatives and Anticancer Potential of Their Platinum-Group Metal Complexes: A Review Recent Progress on Core-Shell Zeolitic Imidazole Frameworks: A Review of Synthesis and Applications Recent Advances in O-, N- and S- Donor Ligands As Chemosensors for the Detection of Cr(III) and Cr(VI). Ions: A Comprehensive Review (2018-2024) Direct and mediator-based Z-scheme heterojunctions involving bi2moo6 for abatement of dyes and pharmaceuticals Application of Inorganic Nanomaterials in Transdermal and Topical Medications: Influential Parameters, Opportunities and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1