{"title":"可溶性Fas配体、可溶性Fas受体和诱饵受体3作为疾病生物标志物的临床应用综述","authors":"M. Muraki","doi":"10.3934/medsci.2022009","DOIUrl":null,"url":null,"abstract":"Soluble Fas ligand (sFasL, sCD95L) and its specific soluble binders, soluble Fas receptor (sFas, sCD95) and decoy receptor 3 (DcR3), have been investigated as possible clinical biomarkers in many serious diseases. The present review aimed to provide an overview of the current state of this medically promising research by extensively examining the relevant literature. The summarized results of the survey are presented after classification into six categories according to the type of targeted disease. To date, the studies have been mainly devoted to the diagnosis of disease severity states and prognosis of treatments about various types of cancers and autoimmune diseases represented by autoimmune lymphoproliferative syndrome and systemic lupus erythematosus, because these important life-threatening or intractable diseases were suggested to be most relevant to the impairment of apoptotic cell death-inducing systems, including the Fas receptor-mediated signaling system, and the mechanisms responsible for their onset. However, various more general inflammation-related diseases, including, but not limited to, other autoimmune and allergic diseases (e.g., rheumatoid arthritis and atopic asthma), infectious diseases (e.g., sepsis and chronic hepatitis), cardiovascular system-specific disorders (e.g., acute coronary syndromes and heart failure) as well as other diseases specific to the renal, hepatic, and respiratory systems, etc., have also been targeted as important fields of research. The data obtained so far demonstrated that sFas, sFasL, and DcR3 possess significant potential in the assessment of various disease states, which can contribute to the development of therapeutic interventions. Although further studies in various relevant fields are essential, it is expected that clinical translation of sFas, sFasL, and DcR3 into practical biomarkers will contribute to effective treatments of a wide variety of diseases.","PeriodicalId":43011,"journal":{"name":"AIMS Medical Science","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soluble Fas ligand, soluble Fas receptor, and decoy receptor 3 as disease biomarkers for clinical applications: A review\",\"authors\":\"M. Muraki\",\"doi\":\"10.3934/medsci.2022009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soluble Fas ligand (sFasL, sCD95L) and its specific soluble binders, soluble Fas receptor (sFas, sCD95) and decoy receptor 3 (DcR3), have been investigated as possible clinical biomarkers in many serious diseases. The present review aimed to provide an overview of the current state of this medically promising research by extensively examining the relevant literature. The summarized results of the survey are presented after classification into six categories according to the type of targeted disease. To date, the studies have been mainly devoted to the diagnosis of disease severity states and prognosis of treatments about various types of cancers and autoimmune diseases represented by autoimmune lymphoproliferative syndrome and systemic lupus erythematosus, because these important life-threatening or intractable diseases were suggested to be most relevant to the impairment of apoptotic cell death-inducing systems, including the Fas receptor-mediated signaling system, and the mechanisms responsible for their onset. However, various more general inflammation-related diseases, including, but not limited to, other autoimmune and allergic diseases (e.g., rheumatoid arthritis and atopic asthma), infectious diseases (e.g., sepsis and chronic hepatitis), cardiovascular system-specific disorders (e.g., acute coronary syndromes and heart failure) as well as other diseases specific to the renal, hepatic, and respiratory systems, etc., have also been targeted as important fields of research. The data obtained so far demonstrated that sFas, sFasL, and DcR3 possess significant potential in the assessment of various disease states, which can contribute to the development of therapeutic interventions. Although further studies in various relevant fields are essential, it is expected that clinical translation of sFas, sFasL, and DcR3 into practical biomarkers will contribute to effective treatments of a wide variety of diseases.\",\"PeriodicalId\":43011,\"journal\":{\"name\":\"AIMS Medical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Medical Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/medsci.2022009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Medical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/medsci.2022009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Soluble Fas ligand, soluble Fas receptor, and decoy receptor 3 as disease biomarkers for clinical applications: A review
Soluble Fas ligand (sFasL, sCD95L) and its specific soluble binders, soluble Fas receptor (sFas, sCD95) and decoy receptor 3 (DcR3), have been investigated as possible clinical biomarkers in many serious diseases. The present review aimed to provide an overview of the current state of this medically promising research by extensively examining the relevant literature. The summarized results of the survey are presented after classification into six categories according to the type of targeted disease. To date, the studies have been mainly devoted to the diagnosis of disease severity states and prognosis of treatments about various types of cancers and autoimmune diseases represented by autoimmune lymphoproliferative syndrome and systemic lupus erythematosus, because these important life-threatening or intractable diseases were suggested to be most relevant to the impairment of apoptotic cell death-inducing systems, including the Fas receptor-mediated signaling system, and the mechanisms responsible for their onset. However, various more general inflammation-related diseases, including, but not limited to, other autoimmune and allergic diseases (e.g., rheumatoid arthritis and atopic asthma), infectious diseases (e.g., sepsis and chronic hepatitis), cardiovascular system-specific disorders (e.g., acute coronary syndromes and heart failure) as well as other diseases specific to the renal, hepatic, and respiratory systems, etc., have also been targeted as important fields of research. The data obtained so far demonstrated that sFas, sFasL, and DcR3 possess significant potential in the assessment of various disease states, which can contribute to the development of therapeutic interventions. Although further studies in various relevant fields are essential, it is expected that clinical translation of sFas, sFasL, and DcR3 into practical biomarkers will contribute to effective treatments of a wide variety of diseases.