条件与无条件分位数回归模型:从业者指南

Javier Alejo, Federico Favata, Gabriel Montes-Rojas, M. Trombetta
{"title":"条件与无条件分位数回归模型:从业者指南","authors":"Javier Alejo, Federico Favata, Gabriel Montes-Rojas, M. Trombetta","doi":"10.18800/economia.202102.004","DOIUrl":null,"url":null,"abstract":"This paper analyzes two econometric tools that are used to evaluate distributional effects, conditional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objective is to shed light on the similarities and differences between these methodologies. An interesting theoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate, the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQR coefficients can take and provides a way to detect misspecification. The key here is a match between CQR whose predicted values are the closest to the unconditional quantile. For a binary covariate, however, we derive a new analytical relationship. We illustrate these models using age returns and gender gap in Argentina for 2019 and 2020.","PeriodicalId":84551,"journal":{"name":"De economia","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners\",\"authors\":\"Javier Alejo, Federico Favata, Gabriel Montes-Rojas, M. Trombetta\",\"doi\":\"10.18800/economia.202102.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes two econometric tools that are used to evaluate distributional effects, conditional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objective is to shed light on the similarities and differences between these methodologies. An interesting theoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate, the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQR coefficients can take and provides a way to detect misspecification. The key here is a match between CQR whose predicted values are the closest to the unconditional quantile. For a binary covariate, however, we derive a new analytical relationship. We illustrate these models using age returns and gender gap in Argentina for 2019 and 2020.\",\"PeriodicalId\":84551,\"journal\":{\"name\":\"De economia\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"De economia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18800/economia.202102.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"De economia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18800/economia.202102.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文分析了两种用于评价分配效应的计量经济学工具:条件分位数回归(CQR)和无条件分位数回归(UQR)。我们的主要目标是阐明这些方法之间的异同。连接CQR和UQR的一个有趣的理论推导是,由于连续协变量的影响,UQR是CQR的加权平均值。这对UQR系数可以取的值施加了明确的界限,并提供了一种检测错误说明的方法。这里的关键是预测值最接近无条件分位数的CQR之间的匹配。然而,对于二元协变量,我们导出了一种新的分析关系。我们使用阿根廷2019年和2020年的年龄回报和性别差距来说明这些模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conditional vs Unconditional Quantile Regression Models: A Guide to Practitioners
This paper analyzes two econometric tools that are used to evaluate distributional effects, conditional quantile regression (CQR) and unconditional quantile regression (UQR). Our main objective is to shed light on the similarities and differences between these methodologies. An interesting theoretical derivation to connect CQR and UQR is that, for the effect of a continuous covariate, the UQR is a weighted average of the CQR. This imposes clear bounds on the values that UQR coefficients can take and provides a way to detect misspecification. The key here is a match between CQR whose predicted values are the closest to the unconditional quantile. For a binary covariate, however, we derive a new analytical relationship. We illustrate these models using age returns and gender gap in Argentina for 2019 and 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Altitude and Distance Relationships with the Multidimensional Poverty Index: The case of Peru Small Firm Electricity Demand in Las Cruces, New Mexico, USA Preferential Trade Agreements and Productivity: Evidence from Peru Poverty, population growth and agglomeration effects in all Brazil cities What drives small and medium enterprises to establish and terminate banking relationships?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1