基于CEL0稀疏近似的超分辨显微镜高密度分子定位

S. Gazagnes, Emmanuel Soubies, L. Blanc-Féraud
{"title":"基于CEL0稀疏近似的超分辨显微镜高密度分子定位","authors":"S. Gazagnes, Emmanuel Soubies, L. Blanc-Féraud","doi":"10.1109/ISBI.2017.7950460","DOIUrl":null,"url":null,"abstract":"Single molecule localization microscopy has made great improvements in spatial resolution achieving performance beyond the diffraction limit by sequentially activating and imaging small subsets of molecules. Here, we present an algorithm designed for high-density molecule localization which is of a major importance in order to improve the temporal resolution of such microscopy techniques. We formulate the localization problem as a sparse approximation problem which is then relaxed using the recently proposed CEL0 penalty, allowing an optimization through recent nonsmooth nonconvex algorithms. Finally, performances of the proposed method are compared with one of the best current method for high-density molecules localization on simulated and real data.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"15 1","pages":"28-31"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation\",\"authors\":\"S. Gazagnes, Emmanuel Soubies, L. Blanc-Féraud\",\"doi\":\"10.1109/ISBI.2017.7950460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single molecule localization microscopy has made great improvements in spatial resolution achieving performance beyond the diffraction limit by sequentially activating and imaging small subsets of molecules. Here, we present an algorithm designed for high-density molecule localization which is of a major importance in order to improve the temporal resolution of such microscopy techniques. We formulate the localization problem as a sparse approximation problem which is then relaxed using the recently proposed CEL0 penalty, allowing an optimization through recent nonsmooth nonconvex algorithms. Finally, performances of the proposed method are compared with one of the best current method for high-density molecules localization on simulated and real data.\",\"PeriodicalId\":6547,\"journal\":{\"name\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"volume\":\"15 1\",\"pages\":\"28-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2017.7950460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

单分子定位显微镜在空间分辨率方面取得了很大的进步,通过顺序激活和成像小分子子集,实现了超越衍射极限的性能。在这里,我们提出了一种高密度分子定位算法,这对于提高此类显微镜技术的时间分辨率至关重要。我们将定位问题表述为一个稀疏逼近问题,然后使用最近提出的CEL0惩罚进行放松,允许通过最近的非光滑非凸算法进行优化。最后,在模拟数据和实际数据上,将该方法与目前最优的高密度分子定位方法进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation
Single molecule localization microscopy has made great improvements in spatial resolution achieving performance beyond the diffraction limit by sequentially activating and imaging small subsets of molecules. Here, we present an algorithm designed for high-density molecule localization which is of a major importance in order to improve the temporal resolution of such microscopy techniques. We formulate the localization problem as a sparse approximation problem which is then relaxed using the recently proposed CEL0 penalty, allowing an optimization through recent nonsmooth nonconvex algorithms. Finally, performances of the proposed method are compared with one of the best current method for high-density molecules localization on simulated and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1