实现千兆晶圆厂批量级晶圆缺货预测所面临的挑战

Georg Seidel, Ching Foong Lee, Aik Ying Tang, Soo Leen Low, Boon-Ping Gan, W. Scholl
{"title":"实现千兆晶圆厂批量级晶圆缺货预测所面临的挑战","authors":"Georg Seidel, Ching Foong Lee, Aik Ying Tang, Soo Leen Low, Boon-Ping Gan, W. Scholl","doi":"10.1109/WSC48552.2020.9384046","DOIUrl":null,"url":null,"abstract":"In the semiconductor industry a reliable delivery forecast is helpful to optimize demand planning. Very often cycle time estimations for frontend, backend production, testing and transits are used to predict delivery times on product level and to determine when products have to be started to fulfill customer demands on time. Frontend production usually consumes a big portion of the cycle time of a product. Therefore a reliable cycle time estimation for a frontend production is crucial for the accuracy of the overall cycle time prediction. We compare two different methods to predict cycle times and delivery forecasts on product and lot level for a frontend production: a Big Data approach, where historical data is analyzed to predict future behavior, and a fab simulation model.","PeriodicalId":6692,"journal":{"name":"2020 Winter Simulation Conference (WSC)","volume":"8 6 1","pages":"1777-1788"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges Associated with Realization of Lot Level Fab Out Forecast in a Giga Wafer Fabrication Plant\",\"authors\":\"Georg Seidel, Ching Foong Lee, Aik Ying Tang, Soo Leen Low, Boon-Ping Gan, W. Scholl\",\"doi\":\"10.1109/WSC48552.2020.9384046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the semiconductor industry a reliable delivery forecast is helpful to optimize demand planning. Very often cycle time estimations for frontend, backend production, testing and transits are used to predict delivery times on product level and to determine when products have to be started to fulfill customer demands on time. Frontend production usually consumes a big portion of the cycle time of a product. Therefore a reliable cycle time estimation for a frontend production is crucial for the accuracy of the overall cycle time prediction. We compare two different methods to predict cycle times and delivery forecasts on product and lot level for a frontend production: a Big Data approach, where historical data is analyzed to predict future behavior, and a fab simulation model.\",\"PeriodicalId\":6692,\"journal\":{\"name\":\"2020 Winter Simulation Conference (WSC)\",\"volume\":\"8 6 1\",\"pages\":\"1777-1788\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC48552.2020.9384046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC48552.2020.9384046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在半导体行业,可靠的交货预测有助于优化需求规划。通常,前端、后端生产、测试和中转的周期时间估计用于预测产品级别的交付时间,并确定何时必须开始生产产品以按时满足客户需求。前端生产通常消耗产品周期时间的很大一部分。因此,对前端生产进行可靠的周期时间估计对于整个周期时间预测的准确性至关重要。我们比较了两种不同的方法来预测前端生产的周期时间和交货预测:一种是大数据方法,通过分析历史数据来预测未来的行为,另一种是晶圆厂模拟模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Challenges Associated with Realization of Lot Level Fab Out Forecast in a Giga Wafer Fabrication Plant
In the semiconductor industry a reliable delivery forecast is helpful to optimize demand planning. Very often cycle time estimations for frontend, backend production, testing and transits are used to predict delivery times on product level and to determine when products have to be started to fulfill customer demands on time. Frontend production usually consumes a big portion of the cycle time of a product. Therefore a reliable cycle time estimation for a frontend production is crucial for the accuracy of the overall cycle time prediction. We compare two different methods to predict cycle times and delivery forecasts on product and lot level for a frontend production: a Big Data approach, where historical data is analyzed to predict future behavior, and a fab simulation model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Précis: The Emotional Mind: The Affective Roots of Culture and Cognition Emotional Correctness Robot Collaboration Intelligence with AI Evaluation and Selection of Hospital Layout Based on an Integrated Simulation Method A Simheuristic Approach for Robust Scheduling of Airport Turnaround Teams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1