氮、磷、EDTA和氯化钠对毛藻生物量和脂质积累的影响

G. G. Satpati, R. Pal
{"title":"氮、磷、EDTA和氯化钠对毛藻生物量和脂质积累的影响","authors":"G. G. Satpati, R. Pal","doi":"10.25081/cb.2020.v11.6223","DOIUrl":null,"url":null,"abstract":"Marine seaweeds or macroalgae are the excellent source of bioactive compounds like proteins, vitamins, carotenoids, dietary fibres and essential fatty acids. These essential fatty acids include both the saturated and unsaturated form. The lipid content of marine macroalgae is very low (1-5%) but under stress conditions they produce up to 30-40% [1]. The fatty acids of marine macroalgae generally have linear chains and even number of carbon atoms with one or more double bonds [2]. Macroalgae have been studied for long for the production of wide range of natural chemicals like agar, agarose, carrageenan and alginates. However, they have never been looked for lipids, as energy resource [1]. Microalgae have been considered for high lipid and used for biodiesel application several times [3-6]. Stress induced changes in lipid and fatty acids profile have also been discussed for long [7-11]. But very few reports are available on macroalgal lipid and fatty acids [12-14]. The effect of nitrate and phosphates on lipidomic and other biochemical compositions of the macroalga Ulva lactuca were studied by Kumari et al. [15]. They investigated the changes in polar lipids, chlorophyll and protein content when they cultured the alga in artificial sea nutrient (ASW) medium supplemented with nitrate and phosphate. Biochemical composition of eighteen marine macroalgae belonging to Chlorophyta, Phaeophyta and Rhodophyta were studied from Okha coast, Gulf of Kutch, India [16]. They studied varied quantities of bioactive compounds like total lipid, protein, carbohydrate, phenol and amino acids. Seasonal variations in fatty acid compositions of 51 macroalgae were studied from Gulf of Mannar, Marine Biosphere Reserve of Southeast coast of India [17]. Comparative accounts of fatty acid compositions of three marine macroalgae were also studied from the coastal region of South India [18]. In our previous study we have reported the effect of nutrient and other abiotic stresses on growth and lipid accumulation in Rhizoclonium africanum [13]. Effects of nitrogen, phosphorus, EDTA and sodium chloride on biomass and lipid accumulation of Chaetomorpha aerea","PeriodicalId":10828,"journal":{"name":"Current Botany","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of nitrogen, phosphorus, EDTA and sodium chloride on biomass and lipid accumulation of Chaetomorpha aerea\",\"authors\":\"G. G. Satpati, R. Pal\",\"doi\":\"10.25081/cb.2020.v11.6223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine seaweeds or macroalgae are the excellent source of bioactive compounds like proteins, vitamins, carotenoids, dietary fibres and essential fatty acids. These essential fatty acids include both the saturated and unsaturated form. The lipid content of marine macroalgae is very low (1-5%) but under stress conditions they produce up to 30-40% [1]. The fatty acids of marine macroalgae generally have linear chains and even number of carbon atoms with one or more double bonds [2]. Macroalgae have been studied for long for the production of wide range of natural chemicals like agar, agarose, carrageenan and alginates. However, they have never been looked for lipids, as energy resource [1]. Microalgae have been considered for high lipid and used for biodiesel application several times [3-6]. Stress induced changes in lipid and fatty acids profile have also been discussed for long [7-11]. But very few reports are available on macroalgal lipid and fatty acids [12-14]. The effect of nitrate and phosphates on lipidomic and other biochemical compositions of the macroalga Ulva lactuca were studied by Kumari et al. [15]. They investigated the changes in polar lipids, chlorophyll and protein content when they cultured the alga in artificial sea nutrient (ASW) medium supplemented with nitrate and phosphate. Biochemical composition of eighteen marine macroalgae belonging to Chlorophyta, Phaeophyta and Rhodophyta were studied from Okha coast, Gulf of Kutch, India [16]. They studied varied quantities of bioactive compounds like total lipid, protein, carbohydrate, phenol and amino acids. Seasonal variations in fatty acid compositions of 51 macroalgae were studied from Gulf of Mannar, Marine Biosphere Reserve of Southeast coast of India [17]. Comparative accounts of fatty acid compositions of three marine macroalgae were also studied from the coastal region of South India [18]. In our previous study we have reported the effect of nutrient and other abiotic stresses on growth and lipid accumulation in Rhizoclonium africanum [13]. Effects of nitrogen, phosphorus, EDTA and sodium chloride on biomass and lipid accumulation of Chaetomorpha aerea\",\"PeriodicalId\":10828,\"journal\":{\"name\":\"Current Botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Botany\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25081/cb.2020.v11.6223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Botany","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25081/cb.2020.v11.6223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

海洋海藻或大型藻类是生物活性化合物的极好来源,如蛋白质、维生素、类胡萝卜素、膳食纤维和必需脂肪酸。这些必需脂肪酸包括饱和脂肪酸和不饱和脂肪酸。海洋大型藻类的脂质含量很低(1-5%),但在逆境条件下,它们的脂质含量高达30-40%[1]。海洋大型藻类的脂肪酸一般呈线性链,且碳原子数量为偶数,具有一个或多个双键[2]。长期以来,人们对大型藻类进行了研究,以生产各种天然化学品,如琼脂糖、卡拉胶和海藻酸盐。然而,它们从未被寻找过作为能源的脂质[1]。微藻被认为具有高脂性,并多次用于生物柴油的应用[3-6]。应激诱导的脂质和脂肪酸谱变化也已讨论了很长时间[7-11]。但关于大藻脂质和脂肪酸的报道很少[12-14]。Kumari等人研究了硝酸盐和磷酸盐对巨藻Ulva lactuca脂质组学和其他生化成分的影响[15]。他们研究了在添加硝酸盐和磷酸盐的人工海水营养液(ASW)培养基中培养海藻时,其极性脂质、叶绿素和蛋白质含量的变化。对印度库奇湾奥卡海岸绿藻、褐藻、红藻等18种大型藻类的生化组成进行了研究[16]。他们研究了不同数量的生物活性化合物,如总脂质、蛋白质、碳水化合物、苯酚和氨基酸。研究了印度东南海岸马纳尔湾海洋生物圈保护区51种大型藻类脂肪酸组成的季节变化[17]。对南印度沿海地区三种大型海藻的脂肪酸组成进行了比较研究[18]。在我们之前的研究中,我们报道了营养和其他非生物胁迫对非洲根梭菌生长和脂质积累的影响[13]。氮、磷、EDTA和氯化钠对毛藻生物量和脂质积累的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of nitrogen, phosphorus, EDTA and sodium chloride on biomass and lipid accumulation of Chaetomorpha aerea
Marine seaweeds or macroalgae are the excellent source of bioactive compounds like proteins, vitamins, carotenoids, dietary fibres and essential fatty acids. These essential fatty acids include both the saturated and unsaturated form. The lipid content of marine macroalgae is very low (1-5%) but under stress conditions they produce up to 30-40% [1]. The fatty acids of marine macroalgae generally have linear chains and even number of carbon atoms with one or more double bonds [2]. Macroalgae have been studied for long for the production of wide range of natural chemicals like agar, agarose, carrageenan and alginates. However, they have never been looked for lipids, as energy resource [1]. Microalgae have been considered for high lipid and used for biodiesel application several times [3-6]. Stress induced changes in lipid and fatty acids profile have also been discussed for long [7-11]. But very few reports are available on macroalgal lipid and fatty acids [12-14]. The effect of nitrate and phosphates on lipidomic and other biochemical compositions of the macroalga Ulva lactuca were studied by Kumari et al. [15]. They investigated the changes in polar lipids, chlorophyll and protein content when they cultured the alga in artificial sea nutrient (ASW) medium supplemented with nitrate and phosphate. Biochemical composition of eighteen marine macroalgae belonging to Chlorophyta, Phaeophyta and Rhodophyta were studied from Okha coast, Gulf of Kutch, India [16]. They studied varied quantities of bioactive compounds like total lipid, protein, carbohydrate, phenol and amino acids. Seasonal variations in fatty acid compositions of 51 macroalgae were studied from Gulf of Mannar, Marine Biosphere Reserve of Southeast coast of India [17]. Comparative accounts of fatty acid compositions of three marine macroalgae were also studied from the coastal region of South India [18]. In our previous study we have reported the effect of nutrient and other abiotic stresses on growth and lipid accumulation in Rhizoclonium africanum [13]. Effects of nitrogen, phosphorus, EDTA and sodium chloride on biomass and lipid accumulation of Chaetomorpha aerea
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of genetic uniformity in micro propagated plantlets of turmeric (Curcuma longa L.) through DNA markers Optimization of stable genetic transformation protocol in castor (Ricinus communis L. cv. TMV 5) using beta glucuronidase reporter gene for pioneer of desirable genes Effect of vermicompost enriched with bacterial endophytes (Azospirillum and Rhizobium) on growth and yield of tomato Discovery of a nuclear haplotype potentially useful for the identification of medicinal rice Njavara (Oryza sativa L.) Effects of copper, nickel and lead on growth parameters and antioxidative defense system of Solanum lycopersicum L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1