Lim Kah Yen, Tengku Arisyah Tengku Yasim-Anuar, F. A. Ujang, H. Husin, H. Ariffin, Paridah Md Tahir, Li Xin Ping, M. Yusof
{"title":"苯酚法提高预处理精炼厂化学循环漂白机械浆黑液中木质素的反应性","authors":"Lim Kah Yen, Tengku Arisyah Tengku Yasim-Anuar, F. A. Ujang, H. Husin, H. Ariffin, Paridah Md Tahir, Li Xin Ping, M. Yusof","doi":"10.47836/pjst.31.5.28","DOIUrl":null,"url":null,"abstract":"Despite black liquor’s (BL) renown as a difficult-to-manage contaminant in the pulp and paper industry, BL has been found as a viable alternative material for adhesive formulation due to its high lignin content. Nevertheless, modification is required to enhance lignin’s reactivity, and there is currently a lack of study focusing on this aspect for BL-lignin. This study aims to increase the phenolic hydroxyl content of BL-lignin by phenolation. After being phenolated at lignin to phenol ratio of 1:1, at a temperature of 100°C for 110 minutes, and with the addition of 8% sulfuric acid (H2SO4) as a catalyst, the phenolic hydroxyl content improved by 51.5%. The results of Fourier transform infrared spectroscopy (FTIR), UV/Vis spectrophotometry, proton nuclear magnetic resonance (1H-NMR), thermogravimetry-differential scanning calorimetry (TG-DSC), and its differential curve showed that the structural change in phenolated lignin opened up more active sites, implying that this lignin could be a good substitute for phenol in phenol-formaldehyde resin manufacturing.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":"161 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactivity Enhancement of Lignin Extracted from Preconditioning Refiner Chemical-Recycle Bleached Mechanized Pulp (PRC-RBMP) Black Liquor by Phenolation\",\"authors\":\"Lim Kah Yen, Tengku Arisyah Tengku Yasim-Anuar, F. A. Ujang, H. Husin, H. Ariffin, Paridah Md Tahir, Li Xin Ping, M. Yusof\",\"doi\":\"10.47836/pjst.31.5.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite black liquor’s (BL) renown as a difficult-to-manage contaminant in the pulp and paper industry, BL has been found as a viable alternative material for adhesive formulation due to its high lignin content. Nevertheless, modification is required to enhance lignin’s reactivity, and there is currently a lack of study focusing on this aspect for BL-lignin. This study aims to increase the phenolic hydroxyl content of BL-lignin by phenolation. After being phenolated at lignin to phenol ratio of 1:1, at a temperature of 100°C for 110 minutes, and with the addition of 8% sulfuric acid (H2SO4) as a catalyst, the phenolic hydroxyl content improved by 51.5%. The results of Fourier transform infrared spectroscopy (FTIR), UV/Vis spectrophotometry, proton nuclear magnetic resonance (1H-NMR), thermogravimetry-differential scanning calorimetry (TG-DSC), and its differential curve showed that the structural change in phenolated lignin opened up more active sites, implying that this lignin could be a good substitute for phenol in phenol-formaldehyde resin manufacturing.\",\"PeriodicalId\":46234,\"journal\":{\"name\":\"Pertanika Journal of Science and Technology\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pertanika Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47836/pjst.31.5.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.31.5.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Reactivity Enhancement of Lignin Extracted from Preconditioning Refiner Chemical-Recycle Bleached Mechanized Pulp (PRC-RBMP) Black Liquor by Phenolation
Despite black liquor’s (BL) renown as a difficult-to-manage contaminant in the pulp and paper industry, BL has been found as a viable alternative material for adhesive formulation due to its high lignin content. Nevertheless, modification is required to enhance lignin’s reactivity, and there is currently a lack of study focusing on this aspect for BL-lignin. This study aims to increase the phenolic hydroxyl content of BL-lignin by phenolation. After being phenolated at lignin to phenol ratio of 1:1, at a temperature of 100°C for 110 minutes, and with the addition of 8% sulfuric acid (H2SO4) as a catalyst, the phenolic hydroxyl content improved by 51.5%. The results of Fourier transform infrared spectroscopy (FTIR), UV/Vis spectrophotometry, proton nuclear magnetic resonance (1H-NMR), thermogravimetry-differential scanning calorimetry (TG-DSC), and its differential curve showed that the structural change in phenolated lignin opened up more active sites, implying that this lignin could be a good substitute for phenol in phenol-formaldehyde resin manufacturing.
期刊介绍:
Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.