bcac - net:一种具有二元通道注意模块的MRI脑分割新架构

Yongpei Zhu, Zicong Zhou, G. Liao, Kehong Yuan
{"title":"bcac - net:一种具有二元通道注意模块的MRI脑分割新架构","authors":"Yongpei Zhu, Zicong Zhou, G. Liao, Kehong Yuan","doi":"10.1109/ICPR48806.2021.9413051","DOIUrl":null,"url":null,"abstract":"Recently deep learning-based networks have achieved advanced performance in medical image segmentation. However, the development of deep learning is slow in magnetic resonance image (MRI) segmentation of normal brain tissues. In this paper, inspired by channel attention module, we propose a new architecture, Binary Channel Attention U-Net (BCAU- Net), by introducing a novel Binary Channel Attention Module (BCAM) into skip connection of U-Net, which can take full advantages of the channel information extracted from the encoding path and corresponding decoding path. To better aggregate multiscale spatial information of the feature map, spatial pyramid pooling (SPP) modules with different pooling operations are used in BCAM instead of original average-pooling and max-pooling operations. We verify this model on two datasets including IBSR and MRBrainS18, and obtain better performance on MRI brain segmentation compared with other methods. We believe the proposed method can advance the performance in brain segmentation and clinical diagnosis.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"25 1","pages":"5690-5695"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BCAU-Net: A Novel Architecture with Binary Channel Attention Module for MRI Brain Segmentation\",\"authors\":\"Yongpei Zhu, Zicong Zhou, G. Liao, Kehong Yuan\",\"doi\":\"10.1109/ICPR48806.2021.9413051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently deep learning-based networks have achieved advanced performance in medical image segmentation. However, the development of deep learning is slow in magnetic resonance image (MRI) segmentation of normal brain tissues. In this paper, inspired by channel attention module, we propose a new architecture, Binary Channel Attention U-Net (BCAU- Net), by introducing a novel Binary Channel Attention Module (BCAM) into skip connection of U-Net, which can take full advantages of the channel information extracted from the encoding path and corresponding decoding path. To better aggregate multiscale spatial information of the feature map, spatial pyramid pooling (SPP) modules with different pooling operations are used in BCAM instead of original average-pooling and max-pooling operations. We verify this model on two datasets including IBSR and MRBrainS18, and obtain better performance on MRI brain segmentation compared with other methods. We believe the proposed method can advance the performance in brain segmentation and clinical diagnosis.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"25 1\",\"pages\":\"5690-5695\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9413051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9413051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,基于深度学习的网络在医学图像分割方面取得了较好的效果。然而,深度学习在正常脑组织的磁共振图像分割方面发展缓慢。本文受信道注意模块的启发,通过在U-Net的跳接中引入一种新颖的二进制信道注意模块(BCAM),充分利用从编码路径和相应的解码路径中提取的信道信息,提出了一种新的结构——二进制信道注意U-Net (BCAU- Net)。为了更好地聚合特征图的多尺度空间信息,在BCAM中使用了不同池化操作的空间金字塔池化(SPP)模块来代替原有的平均池化和最大池化操作。我们在IBSR和MRBrainS18两个数据集上验证了该模型,与其他方法相比,获得了更好的MRI脑分割性能。我们相信该方法可以提高脑分割和临床诊断的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BCAU-Net: A Novel Architecture with Binary Channel Attention Module for MRI Brain Segmentation
Recently deep learning-based networks have achieved advanced performance in medical image segmentation. However, the development of deep learning is slow in magnetic resonance image (MRI) segmentation of normal brain tissues. In this paper, inspired by channel attention module, we propose a new architecture, Binary Channel Attention U-Net (BCAU- Net), by introducing a novel Binary Channel Attention Module (BCAM) into skip connection of U-Net, which can take full advantages of the channel information extracted from the encoding path and corresponding decoding path. To better aggregate multiscale spatial information of the feature map, spatial pyramid pooling (SPP) modules with different pooling operations are used in BCAM instead of original average-pooling and max-pooling operations. We verify this model on two datasets including IBSR and MRBrainS18, and obtain better performance on MRI brain segmentation compared with other methods. We believe the proposed method can advance the performance in brain segmentation and clinical diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory representation learning for Multi-Task NMRDP planning Semantic Segmentation Refinement Using Entropy and Boundary-guided Monte Carlo Sampling and Directed Regional Search A Randomized Algorithm for Sparse Recovery An Empirical Bayes Approach to Topic Modeling To Honor our Heroes: Analysis of the Obituaries of Australians Killed in Action in WWI and WWII
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1