Eddy Sánchez-Delacruz, Juan P Salazar López, David Lara Alabazares, Edgar TELLO LEAL, Mirta Fuentes-Ramos
{"title":"叶片损伤识别的深度学习框架","authors":"Eddy Sánchez-Delacruz, Juan P Salazar López, David Lara Alabazares, Edgar TELLO LEAL, Mirta Fuentes-Ramos","doi":"10.1177/1063293X21994953","DOIUrl":null,"url":null,"abstract":"Foliar disease is common problem in plants; it appears as an abnormal change in the plant’s characteristics, such as the presence of lesions and discolorations, among others. These problems may be related to plant growth, which causes a decrease in crop production, impacting the agricultural economy. The causes of leaf damage can be variable, such as bacteria, viruses, nutritional deficiencies, or even consequences of climate change. Motivated to find a solution for this problem, we aim that using image processing and machine learning algorithms (MLA), these symptomatic characteristics of the leaf can be used to classify diseases. Then, contributions of this research are (i) the use of image processing methods in the feature extraction (characteristics), and (ii) the combination of assembled algorithms with deep learning to classify foliar features of Valencia orange (Citrus Sinensis) tree leaves. Combining these two classification approaches, we get optimal rates in binary datasets and highly competitive percentages in multiclass sets. This, using a database of images of three types of foliar damage of local plants. Result of combination of these two classification strategies is an exceptional reliable alternative for leaf damage identification of orange and other citrus plants.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"53 1","pages":"25 - 34"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep learning framework for leaf damage identification\",\"authors\":\"Eddy Sánchez-Delacruz, Juan P Salazar López, David Lara Alabazares, Edgar TELLO LEAL, Mirta Fuentes-Ramos\",\"doi\":\"10.1177/1063293X21994953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Foliar disease is common problem in plants; it appears as an abnormal change in the plant’s characteristics, such as the presence of lesions and discolorations, among others. These problems may be related to plant growth, which causes a decrease in crop production, impacting the agricultural economy. The causes of leaf damage can be variable, such as bacteria, viruses, nutritional deficiencies, or even consequences of climate change. Motivated to find a solution for this problem, we aim that using image processing and machine learning algorithms (MLA), these symptomatic characteristics of the leaf can be used to classify diseases. Then, contributions of this research are (i) the use of image processing methods in the feature extraction (characteristics), and (ii) the combination of assembled algorithms with deep learning to classify foliar features of Valencia orange (Citrus Sinensis) tree leaves. Combining these two classification approaches, we get optimal rates in binary datasets and highly competitive percentages in multiclass sets. This, using a database of images of three types of foliar damage of local plants. Result of combination of these two classification strategies is an exceptional reliable alternative for leaf damage identification of orange and other citrus plants.\",\"PeriodicalId\":10680,\"journal\":{\"name\":\"Concurrent Engineering\",\"volume\":\"53 1\",\"pages\":\"25 - 34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrent Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1063293X21994953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X21994953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep learning framework for leaf damage identification
Foliar disease is common problem in plants; it appears as an abnormal change in the plant’s characteristics, such as the presence of lesions and discolorations, among others. These problems may be related to plant growth, which causes a decrease in crop production, impacting the agricultural economy. The causes of leaf damage can be variable, such as bacteria, viruses, nutritional deficiencies, or even consequences of climate change. Motivated to find a solution for this problem, we aim that using image processing and machine learning algorithms (MLA), these symptomatic characteristics of the leaf can be used to classify diseases. Then, contributions of this research are (i) the use of image processing methods in the feature extraction (characteristics), and (ii) the combination of assembled algorithms with deep learning to classify foliar features of Valencia orange (Citrus Sinensis) tree leaves. Combining these two classification approaches, we get optimal rates in binary datasets and highly competitive percentages in multiclass sets. This, using a database of images of three types of foliar damage of local plants. Result of combination of these two classification strategies is an exceptional reliable alternative for leaf damage identification of orange and other citrus plants.