减速阶段瑞利-泰勒生长在一个背景磁场研究在圆柱形和笛卡尔几何

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Matter and Radiation at Extremes Pub Date : 2022-03-01 DOI:10.1063/5.0062168
C. Samulski, B. Srinivasan, M. Manuel, R. Masti, J. Sauppe, J. Kline
{"title":"减速阶段瑞利-泰勒生长在一个背景磁场研究在圆柱形和笛卡尔几何","authors":"C. Samulski, B. Srinivasan, M. Manuel, R. Masti, J. Sauppe, J. Kline","doi":"10.1063/5.0062168","DOIUrl":null,"url":null,"abstract":"Experiments have identi fi ed the Rayleigh – Taylor (RT) instability as one of the greatest obstacles to achieving inertial con fi nement fusion. Consequently, mitigation strategies to reduce RT growth and fuel – ablator mixing in the hotspot during the deceleration phase of the implosion are of great interest. In this work, the effect of seed magnetic fi elds on deceleration-phase RT growth are studied in planar and cylindrical geometries under conditions relevant to the National Ignition Facility (NIF) and Omega experiments. The magnetohydrodynamic (MHD) and resistive-MHD capabilities of the FLASH code are used to model imploding cylinders and planar blast-wave-driven targets. Realistic target and laserparametersarepresentedthatsuggesttheoccurrenceofmorphologicaldifferencesinlate-timeRTevolutioninthecylindricalNIFcaseandameasurabledifferenceinspikeheightofsingle-modegrowthintheplanarNIFcase.TheresultsofthisstudyindicatetheneedfortargetdesignstoutilizeanRT-unstablefoam – foam interface in order to achieve suf fi cient magnetic fi eld ampli fi cation to alter RT evolution. Benchmarked FLASH simulations are used to study these magnetic fi eld effects in both resistive and ideal MHD. on the hotspot. The deceleration phase when the interior begins pushing back on the","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"21 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Deceleration-stage Rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries\",\"authors\":\"C. Samulski, B. Srinivasan, M. Manuel, R. Masti, J. Sauppe, J. Kline\",\"doi\":\"10.1063/5.0062168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experiments have identi fi ed the Rayleigh – Taylor (RT) instability as one of the greatest obstacles to achieving inertial con fi nement fusion. Consequently, mitigation strategies to reduce RT growth and fuel – ablator mixing in the hotspot during the deceleration phase of the implosion are of great interest. In this work, the effect of seed magnetic fi elds on deceleration-phase RT growth are studied in planar and cylindrical geometries under conditions relevant to the National Ignition Facility (NIF) and Omega experiments. The magnetohydrodynamic (MHD) and resistive-MHD capabilities of the FLASH code are used to model imploding cylinders and planar blast-wave-driven targets. Realistic target and laserparametersarepresentedthatsuggesttheoccurrenceofmorphologicaldifferencesinlate-timeRTevolutioninthecylindricalNIFcaseandameasurabledifferenceinspikeheightofsingle-modegrowthintheplanarNIFcase.TheresultsofthisstudyindicatetheneedfortargetdesignstoutilizeanRT-unstablefoam – foam interface in order to achieve suf fi cient magnetic fi eld ampli fi cation to alter RT evolution. Benchmarked FLASH simulations are used to study these magnetic fi eld effects in both resistive and ideal MHD. on the hotspot. The deceleration phase when the interior begins pushing back on the\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0062168\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0062168","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

实验表明,瑞利-泰勒(RT)不稳定性是实现惯性融合的最大障碍之一。因此,减少内爆减速阶段热点区域的RT生长和燃料-烧蚀剂混合的减缓策略具有重要意义。在这项工作中,在与国家点火装置(NIF)和Omega实验相关的条件下,研究了种子磁场对减速相RT生长的平面和圆柱几何形状的影响。利用FLASH程序的磁流体力学(MHD)和电阻磁流体力学(MHD)能力对内爆圆柱体和平面冲击波驱动目标进行了建模。提出了现实的目标和激光参数,表明在圆柱型nif情况下晚期进化中存在形态差异,而在平面型nif情况下,单模式生长的高度存在可测量的差异。本研究的结果表明,为了实现足够的磁场放大来改变RT的演化,有必要设计靶体来设计RT不稳定的泡沫-泡沫界面。基准FLASH模拟用于研究这些磁场在电阻和理想MHD中的影响。在热点上。减速阶段,当内部开始推回
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deceleration-stage Rayleigh–Taylor growth in a background magnetic field studied in cylindrical and Cartesian geometries
Experiments have identi fi ed the Rayleigh – Taylor (RT) instability as one of the greatest obstacles to achieving inertial con fi nement fusion. Consequently, mitigation strategies to reduce RT growth and fuel – ablator mixing in the hotspot during the deceleration phase of the implosion are of great interest. In this work, the effect of seed magnetic fi elds on deceleration-phase RT growth are studied in planar and cylindrical geometries under conditions relevant to the National Ignition Facility (NIF) and Omega experiments. The magnetohydrodynamic (MHD) and resistive-MHD capabilities of the FLASH code are used to model imploding cylinders and planar blast-wave-driven targets. Realistic target and laserparametersarepresentedthatsuggesttheoccurrenceofmorphologicaldifferencesinlate-timeRTevolutioninthecylindricalNIFcaseandameasurabledifferenceinspikeheightofsingle-modegrowthintheplanarNIFcase.TheresultsofthisstudyindicatetheneedfortargetdesignstoutilizeanRT-unstablefoam – foam interface in order to achieve suf fi cient magnetic fi eld ampli fi cation to alter RT evolution. Benchmarked FLASH simulations are used to study these magnetic fi eld effects in both resistive and ideal MHD. on the hotspot. The deceleration phase when the interior begins pushing back on the
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
期刊最新文献
Compact laser wakefield acceleration toward high energy with micro-plasma parabola Hollow ion atomic structure and X-ray emission in dense hot plasmas Exotic compounds of monovalent calcium synthesized at high pressure Experimental measurements of gamma-photon production and estimation of electron/positron production on the PETAL laser facility Benchmark simulations of radiative transfer in participating binary stochastic mixtures in two dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1