零-一线性规划模型精确方法的发展

E. Munapo
{"title":"零-一线性规划模型精确方法的发展","authors":"E. Munapo","doi":"10.15587/1729-4061.2020.211793","DOIUrl":null,"url":null,"abstract":"The paper presents a new method for solving the 0–1 linear programming problems (LPs). The general 0–1 LPs are believed to be NP-hard and a consistent, efficient general-purpose algorithm for these models has not been found so far. Cutting planes and branch and bound approaches were the earliest exact methods for the 0–1 LP. Unfortunately, these methods on their own failed to solve the 0–1 LP model consistently and efficiently. The hybrids that are a combination of heuristics, cuts, branch and bound and pricing have been used successfully for some 0–1 models. The main challenge with these hybrids is that these hybrids cannot completely eliminate the threat of combinatorial explosion for very large practical 0–1 LPs. In this paper, a technique to reduce the complexity of 0–1 LPs is proposed. The given problem is used to generate a simpler version of the problem, which is then solved in stages in such a way that the solution obtained is tested for feasibility and improved at every stage until an optimal solution is found. The new problem generated has a coefficient matrix of 0 s and 1 s only. From this study, it can be concluded that for every 0–1 LP with a feasible optimal solution, there exists another 0–1 LP (called a double in this paper) with exactly the same optimal solution but different constraints. The constraints of the double are made up of only 0 s and 1 s. It is not easy to determine this double 0–1 LP by mere inspection but can be obtained in stages as given in the numerical illustration presented in this paper. The 0–1 integer programming models have applications in so many areas of business. These include large economic/financial models, marketing strategy models, production scheduling and labor force planning models, computer design and networking models, military operations, agriculture, wild fire fighting, vehicle routing and health care and medical models","PeriodicalId":10639,"journal":{"name":"Computational Materials Science eJournal","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Exact Method for Zero-One Linear Programming Model\",\"authors\":\"E. Munapo\",\"doi\":\"10.15587/1729-4061.2020.211793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a new method for solving the 0–1 linear programming problems (LPs). The general 0–1 LPs are believed to be NP-hard and a consistent, efficient general-purpose algorithm for these models has not been found so far. Cutting planes and branch and bound approaches were the earliest exact methods for the 0–1 LP. Unfortunately, these methods on their own failed to solve the 0–1 LP model consistently and efficiently. The hybrids that are a combination of heuristics, cuts, branch and bound and pricing have been used successfully for some 0–1 models. The main challenge with these hybrids is that these hybrids cannot completely eliminate the threat of combinatorial explosion for very large practical 0–1 LPs. In this paper, a technique to reduce the complexity of 0–1 LPs is proposed. The given problem is used to generate a simpler version of the problem, which is then solved in stages in such a way that the solution obtained is tested for feasibility and improved at every stage until an optimal solution is found. The new problem generated has a coefficient matrix of 0 s and 1 s only. From this study, it can be concluded that for every 0–1 LP with a feasible optimal solution, there exists another 0–1 LP (called a double in this paper) with exactly the same optimal solution but different constraints. The constraints of the double are made up of only 0 s and 1 s. It is not easy to determine this double 0–1 LP by mere inspection but can be obtained in stages as given in the numerical illustration presented in this paper. The 0–1 integer programming models have applications in so many areas of business. These include large economic/financial models, marketing strategy models, production scheduling and labor force planning models, computer design and networking models, military operations, agriculture, wild fire fighting, vehicle routing and health care and medical models\",\"PeriodicalId\":10639,\"journal\":{\"name\":\"Computational Materials Science eJournal\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/1729-4061.2020.211793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/1729-4061.2020.211793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了求解0-1线性规划问题的一种新方法。一般的0-1 lp被认为是np困难的,到目前为止还没有找到一个一致的、有效的通用算法来处理这些模型。切平面和分支定界法是0-1 LP最早的精确方法。遗憾的是,这些方法本身并不能一致有效地求解0-1 LP模型。在一些0-1模型中,已经成功地使用了启发式、切割、分支约束和定价的混合算法。这些混合井的主要挑战是,对于非常大的实际0-1 lp,这些混合井不能完全消除组合爆炸的威胁。本文提出了一种降低0-1 lp复杂度的技术。给定的问题被用来生成问题的一个更简单的版本,然后分阶段解决这个问题,以这样一种方式,得到的解决方案被测试可行性,并在每个阶段进行改进,直到找到一个最优解决方案。生成的新问题只有一个0和1的系数矩阵。由本研究可知,对于每一个具有可行最优解的0-1 LP,存在另一个具有完全相同最优解但约束条件不同的0-1 LP(本文称为双LP)。双精度对象的约束仅由0和1组成。这种双0-1 LP不容易通过单纯的检查来确定,但可以按照本文给出的数值说明分阶段得到。0-1整数规划模型在许多业务领域都有应用。这些模型包括大型经济/金融模型、营销策略模型、生产调度和劳动力计划模型、计算机设计和网络模型、军事行动、农业、野外消防、车辆路线以及卫生保健和医疗模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an Exact Method for Zero-One Linear Programming Model
The paper presents a new method for solving the 0–1 linear programming problems (LPs). The general 0–1 LPs are believed to be NP-hard and a consistent, efficient general-purpose algorithm for these models has not been found so far. Cutting planes and branch and bound approaches were the earliest exact methods for the 0–1 LP. Unfortunately, these methods on their own failed to solve the 0–1 LP model consistently and efficiently. The hybrids that are a combination of heuristics, cuts, branch and bound and pricing have been used successfully for some 0–1 models. The main challenge with these hybrids is that these hybrids cannot completely eliminate the threat of combinatorial explosion for very large practical 0–1 LPs. In this paper, a technique to reduce the complexity of 0–1 LPs is proposed. The given problem is used to generate a simpler version of the problem, which is then solved in stages in such a way that the solution obtained is tested for feasibility and improved at every stage until an optimal solution is found. The new problem generated has a coefficient matrix of 0 s and 1 s only. From this study, it can be concluded that for every 0–1 LP with a feasible optimal solution, there exists another 0–1 LP (called a double in this paper) with exactly the same optimal solution but different constraints. The constraints of the double are made up of only 0 s and 1 s. It is not easy to determine this double 0–1 LP by mere inspection but can be obtained in stages as given in the numerical illustration presented in this paper. The 0–1 integer programming models have applications in so many areas of business. These include large economic/financial models, marketing strategy models, production scheduling and labor force planning models, computer design and networking models, military operations, agriculture, wild fire fighting, vehicle routing and health care and medical models
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal-Graphene Hybrid Terahertz Metasurfaces Based on Bound States in the Continuum (Bic) and Quasi-Bic for Dynamic Near-Field Imaging Rapid Nucleation and Growth of Tetrafluoroethane Hydrate in the Cyclic Process of Boiling–Condensation A Unified Maximum Entropy Principle Approach for a Large Class of Routing Problems Fabrication of a Novel Surface Molecularly Imprinted Polymer Based on Zeolitic Imidazolate Framework-7 for Selective Extraction of Phthalates Measuring Oxygen Solubility in Ni Grains and Boundaries after Oxidation Using Atom Probe Tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1