T. Limongi, E. Miele, V. Shalabaeva, R. Rocca, Rossana Schipani, N. Malara, F. Angelis, A. Giugni, E. Fabrizio
{"title":"集成光刻和微成型技术设计和制造的三维生物相容性微图案聚ε-己内酯支架的开发、表征和细胞培养反应。","authors":"T. Limongi, E. Miele, V. Shalabaeva, R. Rocca, Rossana Schipani, N. Malara, F. Angelis, A. Giugni, E. Fabrizio","doi":"10.4172/2157-7552.1000145","DOIUrl":null,"url":null,"abstract":"Scaffold design and fabrication are very important subjects for biomaterial, tissue engineering and regenerative medicine research playing a unique role in tissue regeneration and repair. Among synthetic biomaterials Poly-e- Caprolactone (PCL) is very attractive bioresorbable polyester due to its high permeability, biodegradability and capacity to be blended with other biopolymers. Thanks to its ability to naturally degrade in tissues, PCL has a great potential as a new material for implantable biomedical micro devices. This work focuses on the establishment of a micro fabrication process, by integrating lithography and micromolding fabrication techniques, for the realization of 3D microstructure PCL devices. Scaffold surface exhibits a combination in the patterned length scale; cylindrical pillars of 10 μm height and 10 μm diameter are arranged in a hexagonal lattice with periodicity of 30 μm and their sidewalls are nano-sculptured, with a regular pattern of grooves leading to a spatial modulation in the z direction. In order to demonstrate that these biocompatible pillared PCL substrates are suitable for a proper cell growth, NIH/3T3 mouse embryonic fibroblasts were seeded on them and cells key adhesion parameters were evaluated. Scanning Electron Microscopy and immunofluorescence analysis were carried out to check cell survival, proliferation and adhesion; cells growing on the PCL substrates appeared healthy and formed a well-developed network in close contact with the micro and nano features of the pillared surface. Those 3D scaffolds could be a promising solution for a wide range of applications within tissue engineering and regenerative medicine applications.","PeriodicalId":17539,"journal":{"name":"Journal of Tissue Science and Engineering","volume":"10 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε- Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques.\",\"authors\":\"T. Limongi, E. Miele, V. Shalabaeva, R. Rocca, Rossana Schipani, N. Malara, F. Angelis, A. Giugni, E. Fabrizio\",\"doi\":\"10.4172/2157-7552.1000145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scaffold design and fabrication are very important subjects for biomaterial, tissue engineering and regenerative medicine research playing a unique role in tissue regeneration and repair. Among synthetic biomaterials Poly-e- Caprolactone (PCL) is very attractive bioresorbable polyester due to its high permeability, biodegradability and capacity to be blended with other biopolymers. Thanks to its ability to naturally degrade in tissues, PCL has a great potential as a new material for implantable biomedical micro devices. This work focuses on the establishment of a micro fabrication process, by integrating lithography and micromolding fabrication techniques, for the realization of 3D microstructure PCL devices. Scaffold surface exhibits a combination in the patterned length scale; cylindrical pillars of 10 μm height and 10 μm diameter are arranged in a hexagonal lattice with periodicity of 30 μm and their sidewalls are nano-sculptured, with a regular pattern of grooves leading to a spatial modulation in the z direction. In order to demonstrate that these biocompatible pillared PCL substrates are suitable for a proper cell growth, NIH/3T3 mouse embryonic fibroblasts were seeded on them and cells key adhesion parameters were evaluated. Scanning Electron Microscopy and immunofluorescence analysis were carried out to check cell survival, proliferation and adhesion; cells growing on the PCL substrates appeared healthy and formed a well-developed network in close contact with the micro and nano features of the pillared surface. Those 3D scaffolds could be a promising solution for a wide range of applications within tissue engineering and regenerative medicine applications.\",\"PeriodicalId\":17539,\"journal\":{\"name\":\"Journal of Tissue Science and Engineering\",\"volume\":\"10 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7552.1000145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7552.1000145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε- Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques.
Scaffold design and fabrication are very important subjects for biomaterial, tissue engineering and regenerative medicine research playing a unique role in tissue regeneration and repair. Among synthetic biomaterials Poly-e- Caprolactone (PCL) is very attractive bioresorbable polyester due to its high permeability, biodegradability and capacity to be blended with other biopolymers. Thanks to its ability to naturally degrade in tissues, PCL has a great potential as a new material for implantable biomedical micro devices. This work focuses on the establishment of a micro fabrication process, by integrating lithography and micromolding fabrication techniques, for the realization of 3D microstructure PCL devices. Scaffold surface exhibits a combination in the patterned length scale; cylindrical pillars of 10 μm height and 10 μm diameter are arranged in a hexagonal lattice with periodicity of 30 μm and their sidewalls are nano-sculptured, with a regular pattern of grooves leading to a spatial modulation in the z direction. In order to demonstrate that these biocompatible pillared PCL substrates are suitable for a proper cell growth, NIH/3T3 mouse embryonic fibroblasts were seeded on them and cells key adhesion parameters were evaluated. Scanning Electron Microscopy and immunofluorescence analysis were carried out to check cell survival, proliferation and adhesion; cells growing on the PCL substrates appeared healthy and formed a well-developed network in close contact with the micro and nano features of the pillared surface. Those 3D scaffolds could be a promising solution for a wide range of applications within tissue engineering and regenerative medicine applications.