{"title":"基于模型补偿的水下焊接机器人自抗扰控制技术研究","authors":"Shengqiang Li, Xiaofan Zhang","doi":"10.1108/ir-11-2022-0274","DOIUrl":null,"url":null,"abstract":"\nPurpose\nAn active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to compensate. Subsequently, the uncertain external disturbance is estimated and compensated is used an expansion state observer (ESO) in real time, which can reduce the estimating range of observation for ESO. The purpose of this paper is to suggest a novel method to improve the system tracking performance, as well as the dynamic and static performance index.\n\n\nDesign/methodology/approach\nA welding robot is a complicated system with uncertainty, time-varying, strong coupling and a nonlinear system; it is more complex as if it is used in an underwater environment, and it is difficult to establish an accurate dynamic model for an underwater welding robot. Aiming at the tracking control of an underwater welding robot, it is difficult to achieve the control performance requirements by the conventional proportional integral derivative method to realize automatic tracking of the seam.\n\n\nFindings\nThe simulation experiment is carried out by MATLAB/Simulink, and the application experiment is recorded. The experimental results show that the control method is correct and effective, and the system’s tracking performance is stable, and the robustness and tracking accuracy of the system are also improved.\n\n\nOriginality/value\nThe seam gets plumper and smoother, with better continuity and no undercut phenomenon.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on active disturbance rejection control technique for underwater welding robot based on model compensation\",\"authors\":\"Shengqiang Li, Xiaofan Zhang\",\"doi\":\"10.1108/ir-11-2022-0274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nAn active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to compensate. Subsequently, the uncertain external disturbance is estimated and compensated is used an expansion state observer (ESO) in real time, which can reduce the estimating range of observation for ESO. The purpose of this paper is to suggest a novel method to improve the system tracking performance, as well as the dynamic and static performance index.\\n\\n\\nDesign/methodology/approach\\nA welding robot is a complicated system with uncertainty, time-varying, strong coupling and a nonlinear system; it is more complex as if it is used in an underwater environment, and it is difficult to establish an accurate dynamic model for an underwater welding robot. Aiming at the tracking control of an underwater welding robot, it is difficult to achieve the control performance requirements by the conventional proportional integral derivative method to realize automatic tracking of the seam.\\n\\n\\nFindings\\nThe simulation experiment is carried out by MATLAB/Simulink, and the application experiment is recorded. The experimental results show that the control method is correct and effective, and the system’s tracking performance is stable, and the robustness and tracking accuracy of the system are also improved.\\n\\n\\nOriginality/value\\nThe seam gets plumper and smoother, with better continuity and no undercut phenomenon.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-11-2022-0274\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-11-2022-0274","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Research on active disturbance rejection control technique for underwater welding robot based on model compensation
Purpose
An active disturbance rejection controller (ADRC) based on model compensation is proposed in this paper. The method should first be taken a nominal model of the robot to compensate. Subsequently, the uncertain external disturbance is estimated and compensated is used an expansion state observer (ESO) in real time, which can reduce the estimating range of observation for ESO. The purpose of this paper is to suggest a novel method to improve the system tracking performance, as well as the dynamic and static performance index.
Design/methodology/approach
A welding robot is a complicated system with uncertainty, time-varying, strong coupling and a nonlinear system; it is more complex as if it is used in an underwater environment, and it is difficult to establish an accurate dynamic model for an underwater welding robot. Aiming at the tracking control of an underwater welding robot, it is difficult to achieve the control performance requirements by the conventional proportional integral derivative method to realize automatic tracking of the seam.
Findings
The simulation experiment is carried out by MATLAB/Simulink, and the application experiment is recorded. The experimental results show that the control method is correct and effective, and the system’s tracking performance is stable, and the robustness and tracking accuracy of the system are also improved.
Originality/value
The seam gets plumper and smoother, with better continuity and no undercut phenomenon.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.