{"title":"提高金属玻璃强度-延性协同效应的剪切带控制","authors":"Z. Sha, Y. Teng, L. H. Poh, T. Wang, Huajian Gao","doi":"10.1115/1.4056010","DOIUrl":null,"url":null,"abstract":"\n Aside from ultrahigh strength and elasticity, metallic glasses (MGs) possess a number of favorable properties. However, their lack of dislocation based plastic deformation mechanisms in crystalline metals and the resulting loss of ductility have restricted the engineering applications of MGs over the last 60 years. This review aims to provide an overview of deformation and failure mechanisms of MGs via formation and propagation of shear bands (SBs), with an emphasis on the control of SBs to promote strength-ductility synergy. With this goal in mind, we highlight some of the emerging strategies to improve the ductility of MGs. Topics covered include post-processing techniques such as pre-compression, heterogeneity tuning, and rejuvenation, with a primary focus on recent progresses in structural design based methods including nanoglasses, notched MGs, and MG nanolattices, as future innovations towards strength-ductility synergy beyond the current benchmark ranges.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"29 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Shear Band Control for Improved Strength-Ductility Synergy in Metallic Glasses\",\"authors\":\"Z. Sha, Y. Teng, L. H. Poh, T. Wang, Huajian Gao\",\"doi\":\"10.1115/1.4056010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Aside from ultrahigh strength and elasticity, metallic glasses (MGs) possess a number of favorable properties. However, their lack of dislocation based plastic deformation mechanisms in crystalline metals and the resulting loss of ductility have restricted the engineering applications of MGs over the last 60 years. This review aims to provide an overview of deformation and failure mechanisms of MGs via formation and propagation of shear bands (SBs), with an emphasis on the control of SBs to promote strength-ductility synergy. With this goal in mind, we highlight some of the emerging strategies to improve the ductility of MGs. Topics covered include post-processing techniques such as pre-compression, heterogeneity tuning, and rejuvenation, with a primary focus on recent progresses in structural design based methods including nanoglasses, notched MGs, and MG nanolattices, as future innovations towards strength-ductility synergy beyond the current benchmark ranges.\",\"PeriodicalId\":8048,\"journal\":{\"name\":\"Applied Mechanics Reviews\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mechanics Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056010\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056010","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Shear Band Control for Improved Strength-Ductility Synergy in Metallic Glasses
Aside from ultrahigh strength and elasticity, metallic glasses (MGs) possess a number of favorable properties. However, their lack of dislocation based plastic deformation mechanisms in crystalline metals and the resulting loss of ductility have restricted the engineering applications of MGs over the last 60 years. This review aims to provide an overview of deformation and failure mechanisms of MGs via formation and propagation of shear bands (SBs), with an emphasis on the control of SBs to promote strength-ductility synergy. With this goal in mind, we highlight some of the emerging strategies to improve the ductility of MGs. Topics covered include post-processing techniques such as pre-compression, heterogeneity tuning, and rejuvenation, with a primary focus on recent progresses in structural design based methods including nanoglasses, notched MGs, and MG nanolattices, as future innovations towards strength-ductility synergy beyond the current benchmark ranges.
期刊介绍:
Applied Mechanics Reviews (AMR) is an international review journal that serves as a premier venue for dissemination of material across all subdisciplines of applied mechanics and engineering science, including fluid and solid mechanics, heat transfer, dynamics and vibration, and applications.AMR provides an archival repository for state-of-the-art and retrospective survey articles and reviews of research areas and curricular developments. The journal invites commentary on research and education policy in different countries. The journal also invites original tutorial and educational material in applied mechanics targeting non-specialist audiences, including undergraduate and K-12 students.