W. Zhao, L. Ding, B. Zhou, J. Wu, Y. Bai, Z. Man, X. Luo
{"title":"超导拓扑表面态的相图","authors":"W. Zhao, L. Ding, B. Zhou, J. Wu, Y. Bai, Z. Man, X. Luo","doi":"10.5488/CMP.24.43701","DOIUrl":null,"url":null,"abstract":"In this paper, we present a detailed study on the phase diagrams of superconducting topological surface states, especially, focusing on the interplay between crystalline symmetry and topology of the effective BdG Hamiltonian. We show that for the 4 x 4 kinematic Hamiltonian of the normal state, a mirror symmetry M can be defined, and for the M-odd pairings, the classification of the 8 x 8 BdG Hamiltonian is ℤ⊕ℤ, and the time-reversal symmetry is broken intrinsically. The topological non-trivial phase can support chiral Majorana edge modes, and can be realized in the thin films of iron-based superconductor such as FeSeTe.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"31 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase diagrams of superconducting topological surface states\",\"authors\":\"W. Zhao, L. Ding, B. Zhou, J. Wu, Y. Bai, Z. Man, X. Luo\",\"doi\":\"10.5488/CMP.24.43701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a detailed study on the phase diagrams of superconducting topological surface states, especially, focusing on the interplay between crystalline symmetry and topology of the effective BdG Hamiltonian. We show that for the 4 x 4 kinematic Hamiltonian of the normal state, a mirror symmetry M can be defined, and for the M-odd pairings, the classification of the 8 x 8 BdG Hamiltonian is ℤ⊕ℤ, and the time-reversal symmetry is broken intrinsically. The topological non-trivial phase can support chiral Majorana edge modes, and can be realized in the thin films of iron-based superconductor such as FeSeTe.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.24.43701\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.24.43701","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Phase diagrams of superconducting topological surface states
In this paper, we present a detailed study on the phase diagrams of superconducting topological surface states, especially, focusing on the interplay between crystalline symmetry and topology of the effective BdG Hamiltonian. We show that for the 4 x 4 kinematic Hamiltonian of the normal state, a mirror symmetry M can be defined, and for the M-odd pairings, the classification of the 8 x 8 BdG Hamiltonian is ℤ⊕ℤ, and the time-reversal symmetry is broken intrinsically. The topological non-trivial phase can support chiral Majorana edge modes, and can be realized in the thin films of iron-based superconductor such as FeSeTe.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.