TAN与马尔可夫算法应用的比较

Dongdong Xie, Wenning Hao, Gang Chen, Dawei Jin, Shuining Zhao
{"title":"TAN与马尔可夫算法应用的比较","authors":"Dongdong Xie, Wenning Hao, Gang Chen, Dawei Jin, Shuining Zhao","doi":"10.1109/ICECENG.2011.6057533","DOIUrl":null,"url":null,"abstract":"The TAN classifiers based on bayes network are often used in classifying. This paper use TAN classifiers based on bayes network, Markov network and Neural Networks to classify the data of consumers' information and the reduplicated data separately, and compare the results. And found there are some advantages in efficiency and precision to use TAN classifiers in classifying of a great deal of data.","PeriodicalId":6336,"journal":{"name":"2011 International Conference on Electrical and Control Engineering","volume":"1 1","pages":"885-888"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The comparison of application of TAN and Markov\",\"authors\":\"Dongdong Xie, Wenning Hao, Gang Chen, Dawei Jin, Shuining Zhao\",\"doi\":\"10.1109/ICECENG.2011.6057533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The TAN classifiers based on bayes network are often used in classifying. This paper use TAN classifiers based on bayes network, Markov network and Neural Networks to classify the data of consumers' information and the reduplicated data separately, and compare the results. And found there are some advantages in efficiency and precision to use TAN classifiers in classifying of a great deal of data.\",\"PeriodicalId\":6336,\"journal\":{\"name\":\"2011 International Conference on Electrical and Control Engineering\",\"volume\":\"1 1\",\"pages\":\"885-888\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Electrical and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECENG.2011.6057533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Electrical and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECENG.2011.6057533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于贝叶斯网络的TAN分类器是常用的分类方法。本文采用基于贝叶斯网络、马尔可夫网络和神经网络的TAN分类器分别对消费者信息数据和重复数据进行分类,并对结果进行比较。发现在对大量数据进行分类时,使用TAN分类器在效率和精度上有一定的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The comparison of application of TAN and Markov
The TAN classifiers based on bayes network are often used in classifying. This paper use TAN classifiers based on bayes network, Markov network and Neural Networks to classify the data of consumers' information and the reduplicated data separately, and compare the results. And found there are some advantages in efficiency and precision to use TAN classifiers in classifying of a great deal of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aerodynamic and mechanical system modeling of a vertical axis wind turbine (VAWT) Application of Internet of Things for electric fire control A 28 GHz linear envelope tracking-power amplifier for LMDS applications Magnetic field finite element analysis and thrust characteristics calculation of a linear and rotary stepper motor An early warning system based on Motion History Image for blind spot of oversize vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1