轻质油油藏聚合物驱性能研究:实验室案例研究

Dadan Dsm Saputra, B. Prasetiyo, Hestuti Eni, Yudha Taufantri, Ghifahri Damara, Y. D. Rendragraha
{"title":"轻质油油藏聚合物驱性能研究:实验室案例研究","authors":"Dadan Dsm Saputra, B. Prasetiyo, Hestuti Eni, Yudha Taufantri, Ghifahri Damara, Y. D. Rendragraha","doi":"10.29017/scog.45.2.1181","DOIUrl":null,"url":null,"abstract":"The use of polymer solutions in the application of chemical EOR injection technology has a role in increasing oil recovery efforts by improving oil mobility in porous media. The addition of the polymer solution is expected to increase the viscosity value of the displacement fluid so that it can form a “piston-like” effect to increase the volumetric sweep efficiency of the light oil reservoir. The polymer used in this study was HPAM using 3 concentrations, namely 500 ppm, 1000 ppm, and 1500 ppm conducted at a temperature of 70 °C. The rheology test of the polymer included concentration vs temperature and shear rate vs viscosity. Thermal stability testing of polymer for 7, 14, 30, 60, and 90 days at 70 °C was done to determine the stability of the polymer solution. Filtration testing was conducted with the criteria of FR 1.2. The static adsorption test has been done with the standard limit of adsorption value 400 µg / gr. Polymer injectivity test using 3 variations of injection rates and coreflooding test were conducted to determine the reduction of Sor in reservoirs due to polymer displacement. From the polymer testing stage, it was found that HPAM polymers at 3 concentrations were compatible with the injection. This is indicated with the clear solution for 3 concentrations at room temperature and 70 °C. The rheology test results showed that the polymer solution with 3 concentrations was decreased in viscosity with the addition of the shear rate value. In the thermal stability test, the viscosity value of the HPAM with 500 ppm was relatively constant. The value of the FR for HPAM 500 ppm is 1.1, HPAM 1000 ppm is 1.07 and HPAM 1500 ppm is 1.03. The results of the static adsorption test showed the lowest HPAM value of 500 ppm was 156 µg/gr. In the injectivity test results, the resistance residual factor (RRF) values at injection rates of 0.3, 0.6, and 1 cc/min were 0.8, 1.04, and 1.12. The RRF value was close to 1, indicating that after injection of 500 ppm of HPAM tended to not experience plugging. Polymer flooding shows the oil recovery factor (RF) of water injection is 39% OOIP, and RF after polymer injection with 0.35 PV with flush water is 13.5% OOIP or 22% Sor. Knowing the behavior of HPAM polymer with various concentrations to be used for chemical EOR injection, it could provide advantages for future implementation in the light oil reservoir in Indonesia.","PeriodicalId":21649,"journal":{"name":"Scientific Contributions Oil and Gas","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Polymer Flood Performance in Light Oil Reservoir: Laboratory Case Study\",\"authors\":\"Dadan Dsm Saputra, B. Prasetiyo, Hestuti Eni, Yudha Taufantri, Ghifahri Damara, Y. D. Rendragraha\",\"doi\":\"10.29017/scog.45.2.1181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of polymer solutions in the application of chemical EOR injection technology has a role in increasing oil recovery efforts by improving oil mobility in porous media. The addition of the polymer solution is expected to increase the viscosity value of the displacement fluid so that it can form a “piston-like” effect to increase the volumetric sweep efficiency of the light oil reservoir. The polymer used in this study was HPAM using 3 concentrations, namely 500 ppm, 1000 ppm, and 1500 ppm conducted at a temperature of 70 °C. The rheology test of the polymer included concentration vs temperature and shear rate vs viscosity. Thermal stability testing of polymer for 7, 14, 30, 60, and 90 days at 70 °C was done to determine the stability of the polymer solution. Filtration testing was conducted with the criteria of FR 1.2. The static adsorption test has been done with the standard limit of adsorption value 400 µg / gr. Polymer injectivity test using 3 variations of injection rates and coreflooding test were conducted to determine the reduction of Sor in reservoirs due to polymer displacement. From the polymer testing stage, it was found that HPAM polymers at 3 concentrations were compatible with the injection. This is indicated with the clear solution for 3 concentrations at room temperature and 70 °C. The rheology test results showed that the polymer solution with 3 concentrations was decreased in viscosity with the addition of the shear rate value. In the thermal stability test, the viscosity value of the HPAM with 500 ppm was relatively constant. The value of the FR for HPAM 500 ppm is 1.1, HPAM 1000 ppm is 1.07 and HPAM 1500 ppm is 1.03. The results of the static adsorption test showed the lowest HPAM value of 500 ppm was 156 µg/gr. In the injectivity test results, the resistance residual factor (RRF) values at injection rates of 0.3, 0.6, and 1 cc/min were 0.8, 1.04, and 1.12. The RRF value was close to 1, indicating that after injection of 500 ppm of HPAM tended to not experience plugging. Polymer flooding shows the oil recovery factor (RF) of water injection is 39% OOIP, and RF after polymer injection with 0.35 PV with flush water is 13.5% OOIP or 22% Sor. Knowing the behavior of HPAM polymer with various concentrations to be used for chemical EOR injection, it could provide advantages for future implementation in the light oil reservoir in Indonesia.\",\"PeriodicalId\":21649,\"journal\":{\"name\":\"Scientific Contributions Oil and Gas\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Contributions Oil and Gas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29017/scog.45.2.1181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Contributions Oil and Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29017/scog.45.2.1181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚合物溶液在化学提高采收率技术中的应用,通过改善石油在多孔介质中的流动性来提高采收率。聚合物溶液的加入有望提高驱替液的粘度值,从而形成“类似活塞”的效果,从而提高轻质油储层的体积波及效率。本研究使用的聚合物为HPAM,在70℃温度下,采用500 ppm、1000 ppm、1500 ppm三种浓度进行。聚合物的流变性试验包括浓度与温度的关系和剪切速率与粘度的关系。在70℃下对聚合物进行7、14、30、60和90天的热稳定性测试,以确定聚合物溶液的稳定性。过滤试验标准为FR 1.2。静态吸附试验的标准限值为400µg / gr,采用3种不同注入速率进行聚合物注入性试验和岩心驱替试验,以确定聚合物驱替对储层Sor的降低程度。从聚合物测试阶段,发现3种浓度的HPAM聚合物与注射剂相容。这是用室温和70°C下3种浓度的透明溶液表示的。流变学试验结果表明,随着剪切速率值的增加,3种浓度的聚合物溶液粘度均有所降低。在热稳定性测试中,500 ppm的HPAM粘度值相对恒定。HPAM 500 ppm的FR为1.1,HPAM 1000 ppm的FR为1.07,HPAM 1500 ppm的FR为1.03。静态吸附试验结果表明,500 ppm时HPAM最低值为156µg/gr。注射速率为0.3、0.6和1 cc/min时的阻力残余因子(RRF)值分别为0.8、1.04和1.12。RRF值接近于1,说明注入500 ppm HPAM后趋于不发生堵塞。聚合物驱油藏注水采收率为39% OOIP,注水0.35 PV后的采收率为13.5% OOIP或22% Sor。了解不同浓度的HPAM聚合物用于化学提高采收率的行为,可以为未来在印度尼西亚轻质油油藏的实施提供优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of Polymer Flood Performance in Light Oil Reservoir: Laboratory Case Study
The use of polymer solutions in the application of chemical EOR injection technology has a role in increasing oil recovery efforts by improving oil mobility in porous media. The addition of the polymer solution is expected to increase the viscosity value of the displacement fluid so that it can form a “piston-like” effect to increase the volumetric sweep efficiency of the light oil reservoir. The polymer used in this study was HPAM using 3 concentrations, namely 500 ppm, 1000 ppm, and 1500 ppm conducted at a temperature of 70 °C. The rheology test of the polymer included concentration vs temperature and shear rate vs viscosity. Thermal stability testing of polymer for 7, 14, 30, 60, and 90 days at 70 °C was done to determine the stability of the polymer solution. Filtration testing was conducted with the criteria of FR 1.2. The static adsorption test has been done with the standard limit of adsorption value 400 µg / gr. Polymer injectivity test using 3 variations of injection rates and coreflooding test were conducted to determine the reduction of Sor in reservoirs due to polymer displacement. From the polymer testing stage, it was found that HPAM polymers at 3 concentrations were compatible with the injection. This is indicated with the clear solution for 3 concentrations at room temperature and 70 °C. The rheology test results showed that the polymer solution with 3 concentrations was decreased in viscosity with the addition of the shear rate value. In the thermal stability test, the viscosity value of the HPAM with 500 ppm was relatively constant. The value of the FR for HPAM 500 ppm is 1.1, HPAM 1000 ppm is 1.07 and HPAM 1500 ppm is 1.03. The results of the static adsorption test showed the lowest HPAM value of 500 ppm was 156 µg/gr. In the injectivity test results, the resistance residual factor (RRF) values at injection rates of 0.3, 0.6, and 1 cc/min were 0.8, 1.04, and 1.12. The RRF value was close to 1, indicating that after injection of 500 ppm of HPAM tended to not experience plugging. Polymer flooding shows the oil recovery factor (RF) of water injection is 39% OOIP, and RF after polymer injection with 0.35 PV with flush water is 13.5% OOIP or 22% Sor. Knowing the behavior of HPAM polymer with various concentrations to be used for chemical EOR injection, it could provide advantages for future implementation in the light oil reservoir in Indonesia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
SYNTHESIS AND EVALUATION OF SULPHONYL BORATE ESTER AS GREASE ADDITIVE Integrated Approach to Investigate the Potential of Asphalt/Tar Sand on Buton Island, Indonesia Comparative Study of Plug and Abandonment Using Balanced Plug Cementing Method: Case Study of Well “NV-01” Field “NS” The Comparation of Water Saturation Approaches to Reveal a Low Resistivity Reservoir Potential Case in Gumai Formation, South Sumatra Basin The 3D Seismic Survey Design of South Walio Offshore, Indonesia: Optimizing the 3D Survey Design Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1