{"title":"利用启发式搜索技术减少点对点志愿计算网络中的任务迁移","authors":"Ehab Saleh, C. Shastry","doi":"10.3311/ppee.21206","DOIUrl":null,"url":null,"abstract":"Massive computations in today's computer applications necessitate the use of high-performance computing environments. Unfortunately, high costs and power management must be addressed while operating these environments. Volunteer computing (VC) enables the creation of a global network of computing devices capable of accumulating their computing power to outperform any supercomputer. VC refers to the use of underutilized computing resources donated by thousands of volunteers who want to actively participate in solving common research problems. However, VC systems experience unexpected and sudden loss of connections between volunteers' computing resources and the main server. In this case, the server must redistribute the work to new devices as they become available. This process is known as task migration, and it is already used in various volunteer frameworks to address the unavailability of computing resources. However, there is a tendency to limit the number of migrations since they are considered a technically complex and time-consuming process. In this paper, we employ heuristic search algorithms to reduce task migrations caused by loss of connections in Peer-to-Peer volunteer networks by locating an alternate network path to send output files to the server when the direct link is no longer available. The simulation results demonstrate that using a heuristic search algorithm eliminates all task migrations caused by loss of connections, resulting in less total execution time and power consumption.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"24 1","pages":"355-367"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Heuristic Search Techniques to Reduce Task Migrations in Peer-to-Peer Volunteer Computing Networks\",\"authors\":\"Ehab Saleh, C. Shastry\",\"doi\":\"10.3311/ppee.21206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive computations in today's computer applications necessitate the use of high-performance computing environments. Unfortunately, high costs and power management must be addressed while operating these environments. Volunteer computing (VC) enables the creation of a global network of computing devices capable of accumulating their computing power to outperform any supercomputer. VC refers to the use of underutilized computing resources donated by thousands of volunteers who want to actively participate in solving common research problems. However, VC systems experience unexpected and sudden loss of connections between volunteers' computing resources and the main server. In this case, the server must redistribute the work to new devices as they become available. This process is known as task migration, and it is already used in various volunteer frameworks to address the unavailability of computing resources. However, there is a tendency to limit the number of migrations since they are considered a technically complex and time-consuming process. In this paper, we employ heuristic search algorithms to reduce task migrations caused by loss of connections in Peer-to-Peer volunteer networks by locating an alternate network path to send output files to the server when the direct link is no longer available. The simulation results demonstrate that using a heuristic search algorithm eliminates all task migrations caused by loss of connections, resulting in less total execution time and power consumption.\",\"PeriodicalId\":37664,\"journal\":{\"name\":\"Periodica polytechnica Electrical engineering and computer science\",\"volume\":\"24 1\",\"pages\":\"355-367\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica polytechnica Electrical engineering and computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppee.21206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.21206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Using Heuristic Search Techniques to Reduce Task Migrations in Peer-to-Peer Volunteer Computing Networks
Massive computations in today's computer applications necessitate the use of high-performance computing environments. Unfortunately, high costs and power management must be addressed while operating these environments. Volunteer computing (VC) enables the creation of a global network of computing devices capable of accumulating their computing power to outperform any supercomputer. VC refers to the use of underutilized computing resources donated by thousands of volunteers who want to actively participate in solving common research problems. However, VC systems experience unexpected and sudden loss of connections between volunteers' computing resources and the main server. In this case, the server must redistribute the work to new devices as they become available. This process is known as task migration, and it is already used in various volunteer frameworks to address the unavailability of computing resources. However, there is a tendency to limit the number of migrations since they are considered a technically complex and time-consuming process. In this paper, we employ heuristic search algorithms to reduce task migrations caused by loss of connections in Peer-to-Peer volunteer networks by locating an alternate network path to send output files to the server when the direct link is no longer available. The simulation results demonstrate that using a heuristic search algorithm eliminates all task migrations caused by loss of connections, resulting in less total execution time and power consumption.
期刊介绍:
The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).