软件缺陷预测的数据预处理与Imputation相结合

Misha Kakkar, Eleni Constantinou, Apostolos Ampatzoglou, G. Robles, Jesus M. Gonzalez-Barahona, Daniel Izquierdo-Cortazar
{"title":"软件缺陷预测的数据预处理与Imputation相结合","authors":"Misha Kakkar, Eleni Constantinou, Apostolos Ampatzoglou, G. Robles, Jesus M. Gonzalez-Barahona, Daniel Izquierdo-Cortazar","doi":"10.4018/IJOSSP.2018010101","DOIUrl":null,"url":null,"abstract":"SoftwareDefectPrediction(SDP)modelsareusedtopredict,whethersoftwareiscleanorbuggy usingthehistoricaldatacollectedfromvarioussoftwarerepositories.Thedatacollectedfromsuch repositories may contain some missing values. In order to estimate missing values, imputation techniquesareused,whichutilizesthecompleteobservedvaluesinthedataset.Theobjectiveof thisstudyis to identify thebest-suitedimputationtechniqueforhandlingmissingvalues inSDP dataset.Inadditiontoidentifyingtheimputationtechnique,theauthorshaveinvestigatedforthemost appropriatecombinationofimputationtechniqueanddatapreprocessingmethodforbuildingSDP model.Inthisstudy,fourcombinationsofimputationtechniqueanddatapreprocessingmethodsare examinedusingtheimprovedNASAdatasets.Thesecombinationsareusedalongwithfivedifferent machine-learningalgorithmstodevelopmodels.Theperformanceof theseSDPmodelsarethen comparedusingtraditionalperformanceindicators.Experimentresultsshowthatamongdifferent imputationtechniques,linearregressiongivesthemostaccurateimputedvalue.Thecombination oflinearregressionwithcorrelationbasedfeatureselectoroutperformsallothercombinations.To validatethesignificanceofdatapreprocessingmethodswithimputationthefindingsareappliedto opensourceprojects.Itwasconcludedthattheresultisinconsistencywiththeaboveconclusion. KeyWORDS Feature Selection, Instance Selection, Missing Value Imputation, Software Defect Prediction","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"4 1","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Combining Data Preprocessing Methods With Imputation Techniques for Software Defect Prediction\",\"authors\":\"Misha Kakkar, Eleni Constantinou, Apostolos Ampatzoglou, G. Robles, Jesus M. Gonzalez-Barahona, Daniel Izquierdo-Cortazar\",\"doi\":\"10.4018/IJOSSP.2018010101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SoftwareDefectPrediction(SDP)modelsareusedtopredict,whethersoftwareiscleanorbuggy usingthehistoricaldatacollectedfromvarioussoftwarerepositories.Thedatacollectedfromsuch repositories may contain some missing values. In order to estimate missing values, imputation techniquesareused,whichutilizesthecompleteobservedvaluesinthedataset.Theobjectiveof thisstudyis to identify thebest-suitedimputationtechniqueforhandlingmissingvalues inSDP dataset.Inadditiontoidentifyingtheimputationtechnique,theauthorshaveinvestigatedforthemost appropriatecombinationofimputationtechniqueanddatapreprocessingmethodforbuildingSDP model.Inthisstudy,fourcombinationsofimputationtechniqueanddatapreprocessingmethodsare examinedusingtheimprovedNASAdatasets.Thesecombinationsareusedalongwithfivedifferent machine-learningalgorithmstodevelopmodels.Theperformanceof theseSDPmodelsarethen comparedusingtraditionalperformanceindicators.Experimentresultsshowthatamongdifferent imputationtechniques,linearregressiongivesthemostaccurateimputedvalue.Thecombination oflinearregressionwithcorrelationbasedfeatureselectoroutperformsallothercombinations.To validatethesignificanceofdatapreprocessingmethodswithimputationthefindingsareappliedto opensourceprojects.Itwasconcludedthattheresultisinconsistencywiththeaboveconclusion. KeyWORDS Feature Selection, Instance Selection, Missing Value Imputation, Software Defect Prediction\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"4 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJOSSP.2018010101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2018010101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 7

摘要

SoftwareDefectPrediction(SDP)modelsareusedtopredict、whethersoftwareiscleanorbuggy usingthehistoricaldatacollectedfromvarioussoftwarerepositories。Thedatacollectedfromsuch repositories_可能_包含_一些_缺失的_值。> > order > >估计> >缺失的值,> > impuation> > techniquesareused,whichutilizesthecompleteobservedvaluesinthedataset。Theobjectiveof thisstudyis to identify_ thebest-suitedimputationtechniqueforhandlingmissingvalues inSDP数据集。Inadditiontoidentifyingtheimputationtechnique,theauthorshaveinvestigatedforthemost appropriatecombinationofimputationtechniqueanddatapreprocessingmethodforbuildingSDP模型。Inthisstudy,fourcombinationsofimputationtechniqueanddatapreprocessingmethodsare examinedusingtheimprovedNASAdatasets。Thesecombinationsareusedalongwithfivedifferent machine-learningalgorithmstodevelopmodels。Theperformanceof theseSDPmodelsarethen comparedusingtraditionalperformanceindicators。Experimentresultsshowthatamongdifferent imputationtechniques,linearregressiongivesthemostaccurateimputedvalue。Thecombination oflinearregressionwithcorrelationbasedfeatureselectoroutperformsallothercombinations。To validatethesignificanceofdatapreprocessingmethodswithimputationthefindingsareappliedto opensourceprojects.Itwasconcludedthattheresultisinconsistencywiththeaboveconclusion。关键词特征选择,实例选择,缺失值插值,软件缺陷预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Data Preprocessing Methods With Imputation Techniques for Software Defect Prediction
SoftwareDefectPrediction(SDP)modelsareusedtopredict,whethersoftwareiscleanorbuggy usingthehistoricaldatacollectedfromvarioussoftwarerepositories.Thedatacollectedfromsuch repositories may contain some missing values. In order to estimate missing values, imputation techniquesareused,whichutilizesthecompleteobservedvaluesinthedataset.Theobjectiveof thisstudyis to identify thebest-suitedimputationtechniqueforhandlingmissingvalues inSDP dataset.Inadditiontoidentifyingtheimputationtechnique,theauthorshaveinvestigatedforthemost appropriatecombinationofimputationtechniqueanddatapreprocessingmethodforbuildingSDP model.Inthisstudy,fourcombinationsofimputationtechniqueanddatapreprocessingmethodsare examinedusingtheimprovedNASAdatasets.Thesecombinationsareusedalongwithfivedifferent machine-learningalgorithmstodevelopmodels.Theperformanceof theseSDPmodelsarethen comparedusingtraditionalperformanceindicators.Experimentresultsshowthatamongdifferent imputationtechniques,linearregressiongivesthemostaccurateimputedvalue.Thecombination oflinearregressionwithcorrelationbasedfeatureselectoroutperformsallothercombinations.To validatethesignificanceofdatapreprocessingmethodswithimputationthefindingsareappliedto opensourceprojects.Itwasconcludedthattheresultisinconsistencywiththeaboveconclusion. KeyWORDS Feature Selection, Instance Selection, Missing Value Imputation, Software Defect Prediction
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
期刊最新文献
Organizational Influencers in Open-Source Software Projects Enhancing Clustering Performance Using Topic Modeling-Based Dimensionality Reduction Cross Project Software Refactoring Prediction Using Optimized Deep Learning Neural Network with the Aid of Attribute Selection Bug Triage Automation Approaches Modelling and Simulation of Patient Flow in the Emergency Department During the COVID-19 Pandemic Using Hierarchical Coloured Petri Net
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1