基于计算智能的PM2.5时间序列预测缺失数据建模

IF 0.7 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS Modeling Identification and Control Pub Date : 2017-01-01 DOI:10.2316/P.2017.848-025
M. Oprea, M. Popescu, M. Olteanu
{"title":"基于计算智能的PM2.5时间序列预测缺失数据建模","authors":"M. Oprea, M. Popescu, M. Olteanu","doi":"10.2316/P.2017.848-025","DOIUrl":null,"url":null,"abstract":"The paper presents two missing data filling methods which can be applied to time series forecasting. The basic idea of the proposed methods is that usually, the forecasted parameter (in this case PM2.5 air pollutant concentration) is dependent on some related parameters that influence its value. When the parameter time series have missing data due to various reasons (e.g. faulty measurement instruments), the time series of other parameters (if available) can be used to fill in the missing values. One method is based on an artificial neural network that has as input the values of the other related parameters measured at time t and as output the value of the missing value of the forecasted parameter at time t. The other method is Holt-Winters which uses as inputs previous values of the forecasted parameter. These methods are proper for cases with larger gaps in the time series (more than several days). These filling methods are compared in terms of statistical indicators (e.g. RMSE). Also, a comparative study was performed for PM2.5 forecasting accuracy analysis with two forecasting methods: a feed forward artificial neural network and Holt-Winters.","PeriodicalId":49801,"journal":{"name":"Modeling Identification and Control","volume":"97 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling Missing Data for PM2.5 Time Series Forecasting with Computational Intelligence\",\"authors\":\"M. Oprea, M. Popescu, M. Olteanu\",\"doi\":\"10.2316/P.2017.848-025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents two missing data filling methods which can be applied to time series forecasting. The basic idea of the proposed methods is that usually, the forecasted parameter (in this case PM2.5 air pollutant concentration) is dependent on some related parameters that influence its value. When the parameter time series have missing data due to various reasons (e.g. faulty measurement instruments), the time series of other parameters (if available) can be used to fill in the missing values. One method is based on an artificial neural network that has as input the values of the other related parameters measured at time t and as output the value of the missing value of the forecasted parameter at time t. The other method is Holt-Winters which uses as inputs previous values of the forecasted parameter. These methods are proper for cases with larger gaps in the time series (more than several days). These filling methods are compared in terms of statistical indicators (e.g. RMSE). Also, a comparative study was performed for PM2.5 forecasting accuracy analysis with two forecasting methods: a feed forward artificial neural network and Holt-Winters.\",\"PeriodicalId\":49801,\"journal\":{\"name\":\"Modeling Identification and Control\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modeling Identification and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2316/P.2017.848-025\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling Identification and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2316/P.2017.848-025","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了两种可用于时间序列预测的缺失数据填充方法。所提出的方法的基本思想是,通常,预测参数(本例中为PM2.5空气污染物浓度)依赖于一些影响其值的相关参数。当参数时间序列由于各种原因(如测量仪器故障)导致数据缺失时,可以使用其他参数的时间序列(如有)来填补缺失值。一种方法是基于人工神经网络,该网络以在时刻t测量的其他相关参数的值作为输入,并以在时刻t预测参数的缺失值作为输出。另一种方法是Holt-Winters,它使用预测参数的先前值作为输入。这些方法适用于时间序列中间隔较大(超过几天)的情况。根据统计指标(如均方根误差)对这些填充方法进行比较。对比研究了前馈人工神经网络和Holt-Winters两种预测方法对PM2.5的预测精度分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling Missing Data for PM2.5 Time Series Forecasting with Computational Intelligence
The paper presents two missing data filling methods which can be applied to time series forecasting. The basic idea of the proposed methods is that usually, the forecasted parameter (in this case PM2.5 air pollutant concentration) is dependent on some related parameters that influence its value. When the parameter time series have missing data due to various reasons (e.g. faulty measurement instruments), the time series of other parameters (if available) can be used to fill in the missing values. One method is based on an artificial neural network that has as input the values of the other related parameters measured at time t and as output the value of the missing value of the forecasted parameter at time t. The other method is Holt-Winters which uses as inputs previous values of the forecasted parameter. These methods are proper for cases with larger gaps in the time series (more than several days). These filling methods are compared in terms of statistical indicators (e.g. RMSE). Also, a comparative study was performed for PM2.5 forecasting accuracy analysis with two forecasting methods: a feed forward artificial neural network and Holt-Winters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modeling Identification and Control
Modeling Identification and Control 工程技术-计算机:控制论
CiteScore
3.30
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: The aim of MIC is to present Nordic research activities in the field of modeling, identification and control to the international scientific community. Historically, the articles published in MIC presented the results of research carried out in Norway, or sponsored primarily by a Norwegian institution. Since 2009 the journal also accepts papers from the other Nordic countries.
期刊最新文献
Programming Fine Manufacturing Tasks on Collaborative Robots: A Case Study on Industrial Gluing Microevolutionary system identification and climate response predictions by use of BLUP prediction error method Improving Energy Efficiency and Response Time of an Offshore Winch Drive with Digital Displacement Motors A Novel Control Design for Realizing Passive Load-Holding Function on a Two-Motor-Two-Pump Motor-Controlled Hydraulic Cylinder Construct, Merge, Solve and Adapt Applied to the Maximum Disjoint Dominating Sets Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1