{"title":"加拿大西部化学驱的成功与操作挑战","authors":"G. Renouf, G. Bolton, P. Nakutnyy","doi":"10.2118/204321-ms","DOIUrl":null,"url":null,"abstract":"\n Over the last 30 years, chemical flooding of oil reservoirs has been broadly adopted as a technique for enhanced and incremental oil recovery around the world. Western Canadian oil producers have embraced polymer flooding to recover heavy oil, but have applied other forms of chemical flooding more sparingly. This study examines 31 chemical floods - ASP, AP, SP, alkali, and nanosurfactant floods - from mostly heavy oil fields (20 heavy oil, 10 medium oil, and one light oil). The success of the chemical floods was related to over forty reservoir and operating parameters, including water quality. We also discuss the operational challenges common in western Canada.\n Chemical flooding projects were identified through searches of government documents. Production and injection data were gathered using Accumap software; and reservoir and operating parameters were gathered from government documents and literature. Incremental recovery was calculated by performing decline curve analysis of the waterflooding production. The incremental recovery was the difference between the actual production during chemical flooding, and the predicted production had waterflooding continued rather than shifting to chemical flooding. Multivariate analysis was used to determine the most important parameters to the success of the chemical floods.\n The incremental recoveries ranged from 0 to 22% of original oil-in-place (OOIP), or 0 to 44% of OOIP per pore volume. Twenty-three of the 31 floods improved their water-oil ratios (WOR) after the start of chemical flooding. Water quality was a significant issue to the success of the chemical floods, leading to problems that were not anticipated in the planning and development stages. Some case histories are discussed to better illustrate the best practices for chemical recovery of heavy and medium oils. Water sources, management, treatment and chemistry all pose significant challenges that are often not fully assessed before starting the chemical flood projects. The review highlights challenges common to chemical flooding of heavy oil, and discusses common effects experienced as a result of water and chemistry compromises.","PeriodicalId":11099,"journal":{"name":"Day 1 Mon, December 06, 2021","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Flooding in Western Canada – Successes and Operational Challenges\",\"authors\":\"G. Renouf, G. Bolton, P. Nakutnyy\",\"doi\":\"10.2118/204321-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Over the last 30 years, chemical flooding of oil reservoirs has been broadly adopted as a technique for enhanced and incremental oil recovery around the world. Western Canadian oil producers have embraced polymer flooding to recover heavy oil, but have applied other forms of chemical flooding more sparingly. This study examines 31 chemical floods - ASP, AP, SP, alkali, and nanosurfactant floods - from mostly heavy oil fields (20 heavy oil, 10 medium oil, and one light oil). The success of the chemical floods was related to over forty reservoir and operating parameters, including water quality. We also discuss the operational challenges common in western Canada.\\n Chemical flooding projects were identified through searches of government documents. Production and injection data were gathered using Accumap software; and reservoir and operating parameters were gathered from government documents and literature. Incremental recovery was calculated by performing decline curve analysis of the waterflooding production. The incremental recovery was the difference between the actual production during chemical flooding, and the predicted production had waterflooding continued rather than shifting to chemical flooding. Multivariate analysis was used to determine the most important parameters to the success of the chemical floods.\\n The incremental recoveries ranged from 0 to 22% of original oil-in-place (OOIP), or 0 to 44% of OOIP per pore volume. Twenty-three of the 31 floods improved their water-oil ratios (WOR) after the start of chemical flooding. Water quality was a significant issue to the success of the chemical floods, leading to problems that were not anticipated in the planning and development stages. Some case histories are discussed to better illustrate the best practices for chemical recovery of heavy and medium oils. Water sources, management, treatment and chemistry all pose significant challenges that are often not fully assessed before starting the chemical flood projects. The review highlights challenges common to chemical flooding of heavy oil, and discusses common effects experienced as a result of water and chemistry compromises.\",\"PeriodicalId\":11099,\"journal\":{\"name\":\"Day 1 Mon, December 06, 2021\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, December 06, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204321-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, December 06, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204321-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemical Flooding in Western Canada – Successes and Operational Challenges
Over the last 30 years, chemical flooding of oil reservoirs has been broadly adopted as a technique for enhanced and incremental oil recovery around the world. Western Canadian oil producers have embraced polymer flooding to recover heavy oil, but have applied other forms of chemical flooding more sparingly. This study examines 31 chemical floods - ASP, AP, SP, alkali, and nanosurfactant floods - from mostly heavy oil fields (20 heavy oil, 10 medium oil, and one light oil). The success of the chemical floods was related to over forty reservoir and operating parameters, including water quality. We also discuss the operational challenges common in western Canada.
Chemical flooding projects were identified through searches of government documents. Production and injection data were gathered using Accumap software; and reservoir and operating parameters were gathered from government documents and literature. Incremental recovery was calculated by performing decline curve analysis of the waterflooding production. The incremental recovery was the difference between the actual production during chemical flooding, and the predicted production had waterflooding continued rather than shifting to chemical flooding. Multivariate analysis was used to determine the most important parameters to the success of the chemical floods.
The incremental recoveries ranged from 0 to 22% of original oil-in-place (OOIP), or 0 to 44% of OOIP per pore volume. Twenty-three of the 31 floods improved their water-oil ratios (WOR) after the start of chemical flooding. Water quality was a significant issue to the success of the chemical floods, leading to problems that were not anticipated in the planning and development stages. Some case histories are discussed to better illustrate the best practices for chemical recovery of heavy and medium oils. Water sources, management, treatment and chemistry all pose significant challenges that are often not fully assessed before starting the chemical flood projects. The review highlights challenges common to chemical flooding of heavy oil, and discusses common effects experienced as a result of water and chemistry compromises.