求解平衡问题的惯性非单调自适应迭代算法

IF 2.5 2区 数学 Q1 MATHEMATICS Journal of Nonlinear and Variational Analysis Pub Date : 2022-01-01 DOI:10.23952/jnva.6.2022.1.04
H. Rehman, P. Kumam, Y. Shehu, Murat Ozdemir, W. Kumam
{"title":"求解平衡问题的惯性非单调自适应迭代算法","authors":"H. Rehman, P. Kumam, Y. Shehu, Murat Ozdemir, W. Kumam","doi":"10.23952/jnva.6.2022.1.04","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a modification of the extragradient algorithm with a non-monotonic stepsize rule to solve equilibrium problems. This modification is based on the inertial subgradient technique. Under mild conditions, such as, the Lipschitz continuity and the monotonicity of a bifunction (including the pseudomonotonicity), the strong convergence of the proposed algorithm is established in a real Hilbert space. The proposed algorithm uses a non-monotonic stepsize rule based on the local bifunction information rather than its Lipschitz-type constants or other line search methods. We present various numerical examples, which illustrate the strong convergence of the algorithm.","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An inertial non-monotonic self-adaptive iterative algorithm for solving equilibrium problems\",\"authors\":\"H. Rehman, P. Kumam, Y. Shehu, Murat Ozdemir, W. Kumam\",\"doi\":\"10.23952/jnva.6.2022.1.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a modification of the extragradient algorithm with a non-monotonic stepsize rule to solve equilibrium problems. This modification is based on the inertial subgradient technique. Under mild conditions, such as, the Lipschitz continuity and the monotonicity of a bifunction (including the pseudomonotonicity), the strong convergence of the proposed algorithm is established in a real Hilbert space. The proposed algorithm uses a non-monotonic stepsize rule based on the local bifunction information rather than its Lipschitz-type constants or other line search methods. We present various numerical examples, which illustrate the strong convergence of the algorithm.\",\"PeriodicalId\":48488,\"journal\":{\"name\":\"Journal of Nonlinear and Variational Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear and Variational Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.23952/jnva.6.2022.1.04\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear and Variational Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.6.2022.1.04","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一种非单调步长规则改进的外加算法来求解平衡问题。这种修正是基于惯性次梯度技术。在Lipschitz连续性和双函数单调性(包括伪单调性)等较温和的条件下,证明了该算法在实数Hilbert空间中的强收敛性。该算法采用一种基于局部双函数信息的非单调步长规则,而不是其lipschitz型常数或其他线搜索方法。给出了多个数值算例,说明了该算法的强收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An inertial non-monotonic self-adaptive iterative algorithm for solving equilibrium problems
In this paper, we introduce a modification of the extragradient algorithm with a non-monotonic stepsize rule to solve equilibrium problems. This modification is based on the inertial subgradient technique. Under mild conditions, such as, the Lipschitz continuity and the monotonicity of a bifunction (including the pseudomonotonicity), the strong convergence of the proposed algorithm is established in a real Hilbert space. The proposed algorithm uses a non-monotonic stepsize rule based on the local bifunction information rather than its Lipschitz-type constants or other line search methods. We present various numerical examples, which illustrate the strong convergence of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
3.40%
发文量
10
期刊最新文献
Double inertial parameters forward-backward splitting method: Applications to compressed sensing, image processing, and SCAD penalty problems Drop-DIP: A single-image denoising method based on deep image prior Absolute value equations with data uncertainty in the $l_1$ and $l_\infty$ norm balls Sparse broadband beamformer design via proximal optimization Techniques Heat kernels on unit spheres and applications to graph kernels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1