分布式系统的自适应搜索算法

L. Sa, L. Shang, Jun Hou
{"title":"分布式系统的自适应搜索算法","authors":"L. Sa, L. Shang, Jun Hou","doi":"10.1109/ICNC.2008.801","DOIUrl":null,"url":null,"abstract":"Existing search algorithms for peer to peer networks are based on broadcast of query messages over the relationship connectivity among nodes in the network. In this paper, we describes our research effort to design and implement an agent based adaptive search algorithm that allows for searching in distributed systems. Autonomous adaptive agents are modeled after several ecological concepts and mechanisms. We focus on the problem of actively changing the topology of the peer to peer network by utilizing Schelling's segregation model to improve the efficiency of search. Our simulation results show that the proposed algorithm is scalable and robust to dynamic changes in a network.","PeriodicalId":6404,"journal":{"name":"2008 Fourth International Conference on Natural Computation","volume":"23 1","pages":"443-447"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Search Algorithm for Distributed Systems\",\"authors\":\"L. Sa, L. Shang, Jun Hou\",\"doi\":\"10.1109/ICNC.2008.801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing search algorithms for peer to peer networks are based on broadcast of query messages over the relationship connectivity among nodes in the network. In this paper, we describes our research effort to design and implement an agent based adaptive search algorithm that allows for searching in distributed systems. Autonomous adaptive agents are modeled after several ecological concepts and mechanisms. We focus on the problem of actively changing the topology of the peer to peer network by utilizing Schelling's segregation model to improve the efficiency of search. Our simulation results show that the proposed algorithm is scalable and robust to dynamic changes in a network.\",\"PeriodicalId\":6404,\"journal\":{\"name\":\"2008 Fourth International Conference on Natural Computation\",\"volume\":\"23 1\",\"pages\":\"443-447\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2008.801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2008.801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的对等网络搜索算法是基于网络中节点间关系连通性的查询消息广播。在本文中,我们描述了我们的研究工作,以设计和实现一个基于代理的自适应搜索算法,允许在分布式系统中搜索。自主自适应主体是在几个生态学概念和机制的基础上建立的。利用谢林分离模型,研究了主动改变点对点网络拓扑结构的问题,提高了搜索效率。仿真结果表明,该算法对网络的动态变化具有可扩展性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive Search Algorithm for Distributed Systems
Existing search algorithms for peer to peer networks are based on broadcast of query messages over the relationship connectivity among nodes in the network. In this paper, we describes our research effort to design and implement an agent based adaptive search algorithm that allows for searching in distributed systems. Autonomous adaptive agents are modeled after several ecological concepts and mechanisms. We focus on the problem of actively changing the topology of the peer to peer network by utilizing Schelling's segregation model to improve the efficiency of search. Our simulation results show that the proposed algorithm is scalable and robust to dynamic changes in a network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-Level Content-Based Endoscope Image Retrieval A New PSO Scheduling Simulation Algorithm Based on an Intelligent Compensation Particle Position Rounding off Genetic Algorithm with an Application to Complex Portfolio Selection Some Operations of L-Fuzzy Approximate Spaces On Residuated Lattices Image Edge Detection Based on Improved Local Fractal Dimension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1