{"title":"分数阶非局部介质上的扩散问题","authors":"A. Sapora, P. Cornetti, A. Carpinteri","doi":"10.2478/s11534-013-0323-0","DOIUrl":null,"url":null,"abstract":"In this paper, the nonlocal diffusion in one-dimensional continua is investigated by means of a fractional calculus approach. The problem is set on finite spatial domains and it is faced numerically by means of fractional finite differences, both for what concerns the transient and the steady-state regimes. Nonlinear deviations from classical solutions are observed. Furthermore, it is shown that fractional operators possess a clear physical-mechanical meaning, representing conductors, whose conductance decays as a power-law of the distance, connecting non-adjacent points of the body.","PeriodicalId":50985,"journal":{"name":"Central European Journal of Physics","volume":"85 1","pages":"1255-1261"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Diffusion problems on fractional nonlocal media\",\"authors\":\"A. Sapora, P. Cornetti, A. Carpinteri\",\"doi\":\"10.2478/s11534-013-0323-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the nonlocal diffusion in one-dimensional continua is investigated by means of a fractional calculus approach. The problem is set on finite spatial domains and it is faced numerically by means of fractional finite differences, both for what concerns the transient and the steady-state regimes. Nonlinear deviations from classical solutions are observed. Furthermore, it is shown that fractional operators possess a clear physical-mechanical meaning, representing conductors, whose conductance decays as a power-law of the distance, connecting non-adjacent points of the body.\",\"PeriodicalId\":50985,\"journal\":{\"name\":\"Central European Journal of Physics\",\"volume\":\"85 1\",\"pages\":\"1255-1261\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11534-013-0323-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11534-013-0323-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, the nonlocal diffusion in one-dimensional continua is investigated by means of a fractional calculus approach. The problem is set on finite spatial domains and it is faced numerically by means of fractional finite differences, both for what concerns the transient and the steady-state regimes. Nonlinear deviations from classical solutions are observed. Furthermore, it is shown that fractional operators possess a clear physical-mechanical meaning, representing conductors, whose conductance decays as a power-law of the distance, connecting non-adjacent points of the body.