{"title":"TransModel:一个带有删节数据的线性变换模型的R包","authors":"Jie Zhou, Jiajia Zhang, Wenbin Lu","doi":"10.18637/jss.v101.i09","DOIUrl":null,"url":null,"abstract":"Linear transformation models, including the proportional hazards model and proportional odds model, under right censoring were discussed by Chen, Jin, and Ying (2002). The asymptotic variance of the estimator they proposed has a closed form and can be obtained easily by plug-in rules, which improves the computational efficiency. We develop an R package TransModel based on Chen’s approach. The detailed usage of the package is discussed, and the function is applied to the Veterans’ Administration lung cancer data.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TransModel: An R Package for Linear Transformation Model with Censored Data\",\"authors\":\"Jie Zhou, Jiajia Zhang, Wenbin Lu\",\"doi\":\"10.18637/jss.v101.i09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear transformation models, including the proportional hazards model and proportional odds model, under right censoring were discussed by Chen, Jin, and Ying (2002). The asymptotic variance of the estimator they proposed has a closed form and can be obtained easily by plug-in rules, which improves the computational efficiency. We develop an R package TransModel based on Chen’s approach. The detailed usage of the package is discussed, and the function is applied to the Veterans’ Administration lung cancer data.\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v101.i09\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v101.i09","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
摘要
Chen, Jin, and Ying(2002)讨论了右审查下的线性变换模型,包括比例风险模型和比例几率模型。他们所提出的估计量的渐近方差具有封闭的形式,可以很容易地通过插件规则得到,从而提高了计算效率。我们基于Chen的方法开发了一个R包TransModel。讨论了该软件包的详细用法,并将该功能应用于退伍军人管理局肺癌数据。
TransModel: An R Package for Linear Transformation Model with Censored Data
Linear transformation models, including the proportional hazards model and proportional odds model, under right censoring were discussed by Chen, Jin, and Ying (2002). The asymptotic variance of the estimator they proposed has a closed form and can be obtained easily by plug-in rules, which improves the computational efficiency. We develop an R package TransModel based on Chen’s approach. The detailed usage of the package is discussed, and the function is applied to the Veterans’ Administration lung cancer data.
期刊介绍:
The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.