基于遥感图像的视觉问答

Sylvain Lobry, J. Murray, Diego Marcos, D. Tuia
{"title":"基于遥感图像的视觉问答","authors":"Sylvain Lobry, J. Murray, Diego Marcos, D. Tuia","doi":"10.1109/IGARSS.2019.8898891","DOIUrl":null,"url":null,"abstract":"Remote sensing images carry wide amounts of information beyond land cover or land use. Images contain visual and structural information that can be queried to obtain high level information about specific image content or relational dependencies between the objects sensed. This paper explores the possibility to use questions formulated in natural language as a generic and accessible way to extract this type of information from remote sensing images, i.e. visual question answering. We introduce an automatic way to create a dataset using OpenStreetMap1 data and present some preliminary results. Our proposed approach is based on deep learning, and is trained using our new dataset.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"17 1","pages":"4951-4954"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Visual Question Answering From Remote Sensing Images\",\"authors\":\"Sylvain Lobry, J. Murray, Diego Marcos, D. Tuia\",\"doi\":\"10.1109/IGARSS.2019.8898891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing images carry wide amounts of information beyond land cover or land use. Images contain visual and structural information that can be queried to obtain high level information about specific image content or relational dependencies between the objects sensed. This paper explores the possibility to use questions formulated in natural language as a generic and accessible way to extract this type of information from remote sensing images, i.e. visual question answering. We introduce an automatic way to create a dataset using OpenStreetMap1 data and present some preliminary results. Our proposed approach is based on deep learning, and is trained using our new dataset.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"17 1\",\"pages\":\"4951-4954\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

遥感图像包含了大量的信息,超出了土地覆盖或土地利用范围。图像包含视觉和结构信息,可以查询这些信息以获得有关特定图像内容或感测对象之间的关系依赖关系的高级信息。本文探讨了使用自然语言问题作为一种通用的、可访问的方式从遥感图像中提取这类信息的可能性,即视觉问答。本文介绍了一种使用OpenStreetMap1数据自动创建数据集的方法,并给出了一些初步结果。我们提出的方法基于深度学习,并使用我们的新数据集进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Question Answering From Remote Sensing Images
Remote sensing images carry wide amounts of information beyond land cover or land use. Images contain visual and structural information that can be queried to obtain high level information about specific image content or relational dependencies between the objects sensed. This paper explores the possibility to use questions formulated in natural language as a generic and accessible way to extract this type of information from remote sensing images, i.e. visual question answering. We introduce an automatic way to create a dataset using OpenStreetMap1 data and present some preliminary results. Our proposed approach is based on deep learning, and is trained using our new dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1