利用全基因组数据分析遗传力

Jacob B. Hall, William S. Bush
{"title":"利用全基因组数据分析遗传力","authors":"Jacob B. Hall,&nbsp;William S. Bush","doi":"10.1002/cphg.25","DOIUrl":null,"url":null,"abstract":"<p>Most analyses of genome-wide association data consider each variant independently without considering or adjusting for the genetic background present in the rest of the genome. New approaches to genome analysis use representations of genomic sharing to better account for confounding factors like population stratification or to directly approximate heritability through the estimated sharing of individuals in a dataset. These approaches use mixed linear models, which relate genotypic sharing to phenotypic sharing, and rely on the efficient computation of genetic sharing among individuals in a dataset. This unit describes the principles and practical application of mixed models for the analysis of genome-wide association study data. © 2016 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":40007,"journal":{"name":"Current Protocols in Human Genetics","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cphg.25","citationCount":"10","resultStr":"{\"title\":\"Analysis of Heritability Using Genome-Wide Data\",\"authors\":\"Jacob B. Hall,&nbsp;William S. Bush\",\"doi\":\"10.1002/cphg.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most analyses of genome-wide association data consider each variant independently without considering or adjusting for the genetic background present in the rest of the genome. New approaches to genome analysis use representations of genomic sharing to better account for confounding factors like population stratification or to directly approximate heritability through the estimated sharing of individuals in a dataset. These approaches use mixed linear models, which relate genotypic sharing to phenotypic sharing, and rely on the efficient computation of genetic sharing among individuals in a dataset. This unit describes the principles and practical application of mixed models for the analysis of genome-wide association study data. © 2016 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":40007,\"journal\":{\"name\":\"Current Protocols in Human Genetics\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cphg.25\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Protocols in Human Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cphg.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Protocols in Human Genetics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cphg.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

大多数全基因组关联数据分析都独立考虑每个变异,而不考虑或调整基因组其余部分存在的遗传背景。基因组分析的新方法使用基因组共享的表示来更好地解释诸如人口分层之类的混淆因素,或者通过估计数据集中个体的共享来直接近似遗传力。这些方法使用混合线性模型,将基因型共享与表型共享联系起来,并依赖于数据集中个体之间遗传共享的有效计算。本单元描述了用于全基因组关联研究数据分析的混合模型的原理和实际应用。©2016 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of Heritability Using Genome-Wide Data

Most analyses of genome-wide association data consider each variant independently without considering or adjusting for the genetic background present in the rest of the genome. New approaches to genome analysis use representations of genomic sharing to better account for confounding factors like population stratification or to directly approximate heritability through the estimated sharing of individuals in a dataset. These approaches use mixed linear models, which relate genotypic sharing to phenotypic sharing, and rely on the efficient computation of genetic sharing among individuals in a dataset. This unit describes the principles and practical application of mixed models for the analysis of genome-wide association study data. © 2016 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Protocols in Human Genetics
Current Protocols in Human Genetics Biochemistry, Genetics and Molecular Biology-Genetics
自引率
0.00%
发文量
0
期刊介绍: Current Protocols in Human Genetics is the resource for designing and running successful research projects in all branches of human genetics.
期刊最新文献
Issue Information Resolving Breakpoints of Chromosomal Rearrangements at the Nucleotide Level Using Sanger Sequencing Informed Consent for Genetic and Genomic Research A Guide to Using ClinTAD for Interpretation of DNA Copy Number Variants in the Context of Topologically Associated Domains The AD Knowledge Portal: A Repository for Multi-Omic Data on Alzheimer's Disease and Aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1