城市环境下土钉法稳定开挖研究

Farzad Farokhzad, M. Shabani, A. Hasanpour
{"title":"城市环境下土钉法稳定开挖研究","authors":"Farzad Farokhzad, M. Shabani, A. Hasanpour","doi":"10.22075/JRCE.2019.10841.1175","DOIUrl":null,"url":null,"abstract":"There are various methods for stabilizing excavations in urban areas which one of them is the nailing method. Designing a nailing system and analyzing the performance of excavations is done by various software applications. One of these computer programs is PAXIS software which run based on the finite element method (FEM). In the present study, a numerical analysis of the performance of the excavations was investigated under different soil model and the most appropriate model was introduced. In addition, the excavation performance was evaluated based on certain designing conditions affected by the soil resistance specifications (cohesion and internal friction angle) and surcharge. The results indicated that, using an appropriate behavioral model which contains increasing soil stiffness with depth, shows results close to reality. They also indicated that under certain designing conditions, the lateral deformation of the soil nail wall and ground settlement decrease as soil resistance specifications increase.","PeriodicalId":52415,"journal":{"name":"Journal of Rehabilitation in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating Stabilized Excavations Using Soil Nailing Method in Urban Context\",\"authors\":\"Farzad Farokhzad, M. Shabani, A. Hasanpour\",\"doi\":\"10.22075/JRCE.2019.10841.1175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are various methods for stabilizing excavations in urban areas which one of them is the nailing method. Designing a nailing system and analyzing the performance of excavations is done by various software applications. One of these computer programs is PAXIS software which run based on the finite element method (FEM). In the present study, a numerical analysis of the performance of the excavations was investigated under different soil model and the most appropriate model was introduced. In addition, the excavation performance was evaluated based on certain designing conditions affected by the soil resistance specifications (cohesion and internal friction angle) and surcharge. The results indicated that, using an appropriate behavioral model which contains increasing soil stiffness with depth, shows results close to reality. They also indicated that under certain designing conditions, the lateral deformation of the soil nail wall and ground settlement decrease as soil resistance specifications increase.\",\"PeriodicalId\":52415,\"journal\":{\"name\":\"Journal of Rehabilitation in Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rehabilitation in Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/JRCE.2019.10841.1175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rehabilitation in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/JRCE.2019.10841.1175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

城市地区稳定开挖的方法多种多样,钉法是其中的一种。利用各种软件进行了支护系统的设计和支护性能分析。其中一个计算机程序是基于有限元法(FEM)运行的PAXIS软件。本文对不同土体模型下的基坑支护性能进行了数值分析,并给出了最合适的模型。此外,根据土体阻力指标(黏聚力和内摩擦角)和堆填土影响的一定设计条件,对基坑开挖性能进行了评价。结果表明,采用适当的土体刚度随深度增加的行为模型,所得结果与实际情况较为接近。在一定的设计条件下,土钉墙的侧向变形和地面沉降随土阻力规格的增大而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating Stabilized Excavations Using Soil Nailing Method in Urban Context
There are various methods for stabilizing excavations in urban areas which one of them is the nailing method. Designing a nailing system and analyzing the performance of excavations is done by various software applications. One of these computer programs is PAXIS software which run based on the finite element method (FEM). In the present study, a numerical analysis of the performance of the excavations was investigated under different soil model and the most appropriate model was introduced. In addition, the excavation performance was evaluated based on certain designing conditions affected by the soil resistance specifications (cohesion and internal friction angle) and surcharge. The results indicated that, using an appropriate behavioral model which contains increasing soil stiffness with depth, shows results close to reality. They also indicated that under certain designing conditions, the lateral deformation of the soil nail wall and ground settlement decrease as soil resistance specifications increase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rehabilitation in Civil Engineering
Journal of Rehabilitation in Civil Engineering Engineering-Building and Construction
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Damage Sensitive-Stories of RC and Steel Frames under Critical Mainshock-Aftershock Ground Motions Evaluation of Intermediate Reinforced Concrete Moment Frame subjected to Truck collision Damage Detection in Prestressed Concrete Slabs Using Wavelet Analysis of Vibration Responses in the Time Domain Rehabilitation of Corroded Reinforced Concrete Elements by Rebar Replacement Risk assessment and challenges faced in repairs and rehabilitation of dilapidated buildings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1