经验报告:用Haskell开发高性能HTTP/2服务器

Kazuhiko Yamamoto
{"title":"经验报告:用Haskell开发高性能HTTP/2服务器","authors":"Kazuhiko Yamamoto","doi":"10.1145/2976002.2976006","DOIUrl":null,"url":null,"abstract":"While the speed of the Internet has been increasing, HTTP/1.1 has been plagued by head-of-line blocking, low concurrency and redundant headers. To solve these problems, HTTP/2 was standardized. This paper summarizes our experience implementing HTTP/2 in Haskell. We found several techniques to improve the performance of the header compression and identified a suitable data structure for HTTP/2 priority. Also, we showed that Haskell lightweight threads are useful for HTTP/2 where the common tactics of one lightweight thread per connection cannot be used. The HTTP/2 implementation of Warp, the popular HTTP server library in Haskell, ultimately provides better throughput than its HTTP/1.1 counterpart.","PeriodicalId":20669,"journal":{"name":"Proceedings of the 9th International Symposium on Haskell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experience report: developing high performance HTTP/2 server in Haskell\",\"authors\":\"Kazuhiko Yamamoto\",\"doi\":\"10.1145/2976002.2976006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While the speed of the Internet has been increasing, HTTP/1.1 has been plagued by head-of-line blocking, low concurrency and redundant headers. To solve these problems, HTTP/2 was standardized. This paper summarizes our experience implementing HTTP/2 in Haskell. We found several techniques to improve the performance of the header compression and identified a suitable data structure for HTTP/2 priority. Also, we showed that Haskell lightweight threads are useful for HTTP/2 where the common tactics of one lightweight thread per connection cannot be used. The HTTP/2 implementation of Warp, the popular HTTP server library in Haskell, ultimately provides better throughput than its HTTP/1.1 counterpart.\",\"PeriodicalId\":20669,\"journal\":{\"name\":\"Proceedings of the 9th International Symposium on Haskell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Symposium on Haskell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2976002.2976006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Symposium on Haskell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2976002.2976006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

虽然互联网的速度一直在提高,但HTTP/1.1一直受到行首阻塞、低并发性和冗余头的困扰。为了解决这些问题,HTTP/2被标准化了。本文总结了我们在Haskell中实现HTTP/2的经验。我们找到了几种提高报头压缩性能的技术,并确定了适合HTTP/2优先级的数据结构。此外,我们还展示了Haskell轻量级线程对于HTTP/2非常有用,在这种情况下,不能使用每个连接一个轻量级线程的常见策略。HTTP/2实现的Warp (Haskell中流行的HTTP服务器库)最终提供了比HTTP/1.1更好的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experience report: developing high performance HTTP/2 server in Haskell
While the speed of the Internet has been increasing, HTTP/1.1 has been plagued by head-of-line blocking, low concurrency and redundant headers. To solve these problems, HTTP/2 was standardized. This paper summarizes our experience implementing HTTP/2 in Haskell. We found several techniques to improve the performance of the header compression and identified a suitable data structure for HTTP/2 priority. Also, we showed that Haskell lightweight threads are useful for HTTP/2 where the common tactics of one lightweight thread per connection cannot be used. The HTTP/2 implementation of Warp, the popular HTTP server library in Haskell, ultimately provides better throughput than its HTTP/1.1 counterpart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Key monad: type-safe unconstrained dynamic typing Experience report: developing high performance HTTP/2 server in Haskell How to twist pointers without breaking them Embedding session types in Haskell QuickFuzz: an automatic random fuzzer for common file formats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1