减少用户对辅助技术增量活动识别的干预

Julien Rebetez, H. Satizábal, A. Pérez-Uribe
{"title":"减少用户对辅助技术增量活动识别的干预","authors":"Julien Rebetez, H. Satizábal, A. Pérez-Uribe","doi":"10.1145/2493988.2494350","DOIUrl":null,"url":null,"abstract":"Activity recognition has recently gained a lot of interest and there already exist several methods to detect human activites based on wearable sensors. Most of the existing methods rely on a database of labelled activities that is used to train an offline activity recognition system. This paper presents an approach to build an online activity recognition system that do not require any a priori labelled data. The system incrementally learns activities by actively querying the user for labels. To choose when the user should be queried, we compare a method based on random sampling and another that uses a Growing Neural Gas (GNG). The use of GNG helps reducing the number of user queries by 20% to 30%.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"10 1","pages":"29-32"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Reducing user intervention in incremental activityrecognition for assistive technologies\",\"authors\":\"Julien Rebetez, H. Satizábal, A. Pérez-Uribe\",\"doi\":\"10.1145/2493988.2494350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activity recognition has recently gained a lot of interest and there already exist several methods to detect human activites based on wearable sensors. Most of the existing methods rely on a database of labelled activities that is used to train an offline activity recognition system. This paper presents an approach to build an online activity recognition system that do not require any a priori labelled data. The system incrementally learns activities by actively querying the user for labels. To choose when the user should be queried, we compare a method based on random sampling and another that uses a Growing Neural Gas (GNG). The use of GNG helps reducing the number of user queries by 20% to 30%.\",\"PeriodicalId\":90988,\"journal\":{\"name\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"volume\":\"10 1\",\"pages\":\"29-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493988.2494350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

活动识别最近引起了人们的极大兴趣,并且已经有几种基于可穿戴传感器的人类活动检测方法。大多数现有的方法依赖于一个标记活动的数据库,该数据库用于训练离线活动识别系统。本文提出了一种不需要任何先验标记数据的在线活动识别系统的构建方法。系统通过主动查询用户的标签来逐步学习活动。为了选择何时应该询问用户,我们比较了一种基于随机抽样的方法和另一种使用生长神经气体(GNG)的方法。使用GNG有助于将用户查询的数量减少20%到30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing user intervention in incremental activityrecognition for assistive technologies
Activity recognition has recently gained a lot of interest and there already exist several methods to detect human activites based on wearable sensors. Most of the existing methods rely on a database of labelled activities that is used to train an offline activity recognition system. This paper presents an approach to build an online activity recognition system that do not require any a priori labelled data. The system incrementally learns activities by actively querying the user for labels. To choose when the user should be queried, we compare a method based on random sampling and another that uses a Growing Neural Gas (GNG). The use of GNG helps reducing the number of user queries by 20% to 30%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Semantic Web: 19th International Conference, ESWC 2022, Hersonissos, Crete, Greece, May 29 – June 2, 2022, Proceedings Correction to: A Semantic Framework to Support AI System Accountability and Audit The Semantic Web: 18th International Conference, ESWC 2021, Virtual Event, June 6–10, 2021, Proceedings QAnswer KG: Designing a Portable Question Answering System over RDF Data Incremental Multi-source Entity Resolution for Knowledge Graph Completion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1