摘要:利用Boxfish挖掘性能数据

Katherine E. Isaacs, Aaditya G. Landge, T. Gamblin, P. Bremer, Valerio Pascucci, B. Hamann
{"title":"摘要:利用Boxfish挖掘性能数据","authors":"Katherine E. Isaacs, Aaditya G. Landge, T. Gamblin, P. Bremer, Valerio Pascucci, B. Hamann","doi":"10.1109/SC.Companion.2012.202","DOIUrl":null,"url":null,"abstract":"The growth in size and complexity of scaling applications and the systems on which they run pose challenges in analyzing and improving their overall performance. With metrics coming from thousands or millions of processes, visualization techniques are necessary to make sense of the increasing amount of data. To aid the process of exploration and understanding, we announce the initial release of Boxfish, an extensible tool for manipulating and visualizing data pertaining to application behavior. Combining and visually presenting data and knowledge from multiple domains, such as the application's communication patterns and the hardware's network configuration and routing policies, can yield the insight necessary to discover the underlying causes of observed behavior. Boxfish allows users to query, filter and project data across these domains to create interactive, linked visualizations.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"24 1","pages":"1380-1381"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Abstract: Exploring Performance Data with Boxfish\",\"authors\":\"Katherine E. Isaacs, Aaditya G. Landge, T. Gamblin, P. Bremer, Valerio Pascucci, B. Hamann\",\"doi\":\"10.1109/SC.Companion.2012.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth in size and complexity of scaling applications and the systems on which they run pose challenges in analyzing and improving their overall performance. With metrics coming from thousands or millions of processes, visualization techniques are necessary to make sense of the increasing amount of data. To aid the process of exploration and understanding, we announce the initial release of Boxfish, an extensible tool for manipulating and visualizing data pertaining to application behavior. Combining and visually presenting data and knowledge from multiple domains, such as the application's communication patterns and the hardware's network configuration and routing policies, can yield the insight necessary to discover the underlying causes of observed behavior. Boxfish allows users to query, filter and project data across these domains to create interactive, linked visualizations.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"24 1\",\"pages\":\"1380-1381\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

扩展应用程序及其运行的系统的规模和复杂性的增长对分析和改进其整体性能提出了挑战。由于指标来自数千或数百万个流程,因此需要可视化技术来理解不断增加的数据量。为了帮助探索和理解的过程,我们宣布Boxfish的初始版本,这是一个可扩展的工具,用于操作和可视化与应用程序行为有关的数据。将来自多个领域(例如应用程序的通信模式和硬件的网络配置和路由策略)的数据和知识组合并可视化地呈现出来,可以产生必要的洞察力,从而发现观察到的行为的潜在原因。Boxfish允许用户查询、过滤和项目跨这些域的数据,以创建交互式的、链接的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Abstract: Exploring Performance Data with Boxfish
The growth in size and complexity of scaling applications and the systems on which they run pose challenges in analyzing and improving their overall performance. With metrics coming from thousands or millions of processes, visualization techniques are necessary to make sense of the increasing amount of data. To aid the process of exploration and understanding, we announce the initial release of Boxfish, an extensible tool for manipulating and visualizing data pertaining to application behavior. Combining and visually presenting data and knowledge from multiple domains, such as the application's communication patterns and the hardware's network configuration and routing policies, can yield the insight necessary to discover the underlying causes of observed behavior. Boxfish allows users to query, filter and project data across these domains to create interactive, linked visualizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1