利用经验模态分解方法研究白噪声的特性

Zhaohua Wu, N. Huang
{"title":"利用经验模态分解方法研究白噪声的特性","authors":"Zhaohua Wu, N. Huang","doi":"10.1098/rspa.2003.1221","DOIUrl":null,"url":null,"abstract":"Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter, the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area on a semi–logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy–density function is chi–squared distributed. Furthermore, we derive the energy–density spread function of the IMF components. Through these results, we establish a method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data are used to illustrate the methodology developed here.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"27 1","pages":"1597 - 1611"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1639","resultStr":"{\"title\":\"A study of the characteristics of white noise using the empirical mode decomposition method\",\"authors\":\"Zhaohua Wu, N. Huang\",\"doi\":\"10.1098/rspa.2003.1221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter, the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area on a semi–logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy–density function is chi–squared distributed. Furthermore, we derive the energy–density spread function of the IMF components. Through these results, we establish a method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data are used to illustrate the methodology developed here.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":\"27 1\",\"pages\":\"1597 - 1611\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1639\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2003.1221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2003.1221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1639

摘要

利用经验模态分解(EMD)方法对白噪声进行了数值实验,结果表明EMD是一个有效的二进滤波器,其本征模态函数(IMF)分量均为正态分布,各本征模态函数分量的傅里叶谱在半对数周期尺度上均相同且覆盖相同的面积。从这些实证结果展开,我们进一步推导出IMF的能量密度与其对应的平均周期的乘积是一个常数,并且能量密度函数是卡方分布的。进一步推导了IMF分量的能量密度扩散函数。通过这些结果,我们建立了一种从任何噪声数据中分配IMF成分信息内容统计显著性的方法。南方涛动指数的数据被用来说明这里开发的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study of the characteristics of white noise using the empirical mode decomposition method
Based on numerical experiments on white noise using the empirical mode decomposition (EMD) method, we find empirically that the EMD is effectively a dyadic filter, the intrinsic mode function (IMF) components are all normally distributed, and the Fourier spectra of the IMF components are all identical and cover the same area on a semi–logarithmic period scale. Expanding from these empirical findings, we further deduce that the product of the energy density of IMF and its corresponding averaged period is a constant, and that the energy–density function is chi–squared distributed. Furthermore, we derive the energy–density spread function of the IMF components. Through these results, we establish a method of assigning statistical significance of information content for IMF components from any noisy data. Southern Oscillation Index data are used to illustrate the methodology developed here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
期刊最新文献
Plankton Nanocrystalline ceria imparts better high–temperature protection Spectral concentrations and resonances of a second–order block operator matrix and an associated λ–rational Sturm-Liouville problem Mechanical field fluctuations in polycrystals estimated by homogenization techniques Oblique scattering of plane flexural–gravity waves by heterogeneities in sea–ice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1