一种改进的聚类方法

O. Kettani, F. Ramdani
{"title":"一种改进的聚类方法","authors":"O. Kettani, F. Ramdani","doi":"10.5120/IJAIS2017451689","DOIUrl":null,"url":null,"abstract":"Clustering is a common and useful exploratory task widely used in Data mining. Among the many existing clustering algorithms, the Agglomerative Clustering Method (ACM) introduced by the authors suffers from an obvious drawback: its sensitivity to data ordering. To overcome this issue, we propose in this paper to initialize the ACM by using the KKZ seed algorithm. The proposed approach (called KKZ_ACM) has a lower computational time complexity than the famous kmeans algorithm. We evaluated its performance by applying on various benchmark datasets and compare with ACM, kmeans++ and KKZ_ k-means. Our performance studies have demonstrated that the proposed approach is effective in producing consistent clustering results in term of average Silhouette index. General Terms Data mining, Algorithms","PeriodicalId":92376,"journal":{"name":"International journal of applied information systems","volume":"131 1","pages":"16-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Agglomerative Clustering Method\",\"authors\":\"O. Kettani, F. Ramdani\",\"doi\":\"10.5120/IJAIS2017451689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is a common and useful exploratory task widely used in Data mining. Among the many existing clustering algorithms, the Agglomerative Clustering Method (ACM) introduced by the authors suffers from an obvious drawback: its sensitivity to data ordering. To overcome this issue, we propose in this paper to initialize the ACM by using the KKZ seed algorithm. The proposed approach (called KKZ_ACM) has a lower computational time complexity than the famous kmeans algorithm. We evaluated its performance by applying on various benchmark datasets and compare with ACM, kmeans++ and KKZ_ k-means. Our performance studies have demonstrated that the proposed approach is effective in producing consistent clustering results in term of average Silhouette index. General Terms Data mining, Algorithms\",\"PeriodicalId\":92376,\"journal\":{\"name\":\"International journal of applied information systems\",\"volume\":\"131 1\",\"pages\":\"16-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of applied information systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5120/IJAIS2017451689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied information systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5120/IJAIS2017451689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类是数据挖掘中广泛使用的一种常见而有用的探索性任务。在现有的众多聚类算法中,本文介绍的聚类方法(Agglomerative clustering Method, ACM)有一个明显的缺点:对数据排序的敏感性。为了克服这一问题,本文提出使用KKZ种子算法初始化ACM。所提出的方法(称为KKZ_ACM)具有比著名的kmeans算法更低的计算时间复杂度。我们通过应用于各种基准数据集来评估其性能,并与ACM、kmeans++和KKZ_ k-means进行比较。我们的性能研究表明,所提出的方法在平均廓形指数方面产生一致的聚类结果是有效的。通用术语数据挖掘,算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Agglomerative Clustering Method
Clustering is a common and useful exploratory task widely used in Data mining. Among the many existing clustering algorithms, the Agglomerative Clustering Method (ACM) introduced by the authors suffers from an obvious drawback: its sensitivity to data ordering. To overcome this issue, we propose in this paper to initialize the ACM by using the KKZ seed algorithm. The proposed approach (called KKZ_ACM) has a lower computational time complexity than the famous kmeans algorithm. We evaluated its performance by applying on various benchmark datasets and compare with ACM, kmeans++ and KKZ_ k-means. Our performance studies have demonstrated that the proposed approach is effective in producing consistent clustering results in term of average Silhouette index. General Terms Data mining, Algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing the Fight against Social Media Misinformation: An Ensemble Deep Learning Framework for Detecting Deepfakes Securing Healthcare Systems in the Era of 6G Networks: A Perspective on the Enabling Technologies REVIEW OF ONLINE SHOPPING DESIGN IN NIGERIA: CHALLENGES AND OPPORTUNITIES Privacy And Security Issues: An Assessment of the Awareness Level of Smartphone Users in Nigeria Enhancing Fake News Identification in Social Media through Ensemble Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1