{"title":"模拟计算机系统的稳定性","authors":"V. López, G. Miñana","doi":"10.1142/S0218488512400065","DOIUrl":null,"url":null,"abstract":"Performance, reliability and safety are relevant factors when analyzing or designing a computer system. Many studies about on performance are based on monitoring and analyzing data from a computer system. One of the most useful pieces of data is the Load Average (LA) that which shows the load average of the system in the last minute, the sequence of in the last five minutes and the sequence of in the last fifteen last minutes. There are a lot ofmany studies of the system performance based on the load average. This is shown by mean means of monitoring the commands of the operative system, but sometimes they are sometimes difficult to understand and far of removed from human intuition. The aim of this paper is to show demonstrate a new procedure that allows us to determine the stability of a computer system from a list of load average sample data. The idea is shown as an algorithm based in statistic analysis, the aggregation of information and its formal specification. The result is an evaluation of the stability of the load and the computer system by monitoring but without adding any overhead to the system. In addition, the procedure can be used as a software monitor for risk prevention of on any vulnerable system.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"24 1","pages":"81-90"},"PeriodicalIF":1.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MODELING THE STABILITY OF A COMPUTER SYSTEM\",\"authors\":\"V. López, G. Miñana\",\"doi\":\"10.1142/S0218488512400065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance, reliability and safety are relevant factors when analyzing or designing a computer system. Many studies about on performance are based on monitoring and analyzing data from a computer system. One of the most useful pieces of data is the Load Average (LA) that which shows the load average of the system in the last minute, the sequence of in the last five minutes and the sequence of in the last fifteen last minutes. There are a lot ofmany studies of the system performance based on the load average. This is shown by mean means of monitoring the commands of the operative system, but sometimes they are sometimes difficult to understand and far of removed from human intuition. The aim of this paper is to show demonstrate a new procedure that allows us to determine the stability of a computer system from a list of load average sample data. The idea is shown as an algorithm based in statistic analysis, the aggregation of information and its formal specification. The result is an evaluation of the stability of the load and the computer system by monitoring but without adding any overhead to the system. In addition, the procedure can be used as a software monitor for risk prevention of on any vulnerable system.\",\"PeriodicalId\":50283,\"journal\":{\"name\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"volume\":\"24 1\",\"pages\":\"81-90\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1142/S0218488512400065\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488512400065","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Performance, reliability and safety are relevant factors when analyzing or designing a computer system. Many studies about on performance are based on monitoring and analyzing data from a computer system. One of the most useful pieces of data is the Load Average (LA) that which shows the load average of the system in the last minute, the sequence of in the last five minutes and the sequence of in the last fifteen last minutes. There are a lot ofmany studies of the system performance based on the load average. This is shown by mean means of monitoring the commands of the operative system, but sometimes they are sometimes difficult to understand and far of removed from human intuition. The aim of this paper is to show demonstrate a new procedure that allows us to determine the stability of a computer system from a list of load average sample data. The idea is shown as an algorithm based in statistic analysis, the aggregation of information and its formal specification. The result is an evaluation of the stability of the load and the computer system by monitoring but without adding any overhead to the system. In addition, the procedure can be used as a software monitor for risk prevention of on any vulnerable system.
期刊介绍:
The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.