{"title":"一种基于正则稀疏度自适应匹配追踪的联合稀疏信号重构呼吸频率快速估计方法。","authors":"Zhongyi Han, Qun Wang, Liang Yue, Zhiwen Liu","doi":"10.1109/EMBC.2018.8512897","DOIUrl":null,"url":null,"abstract":"Many algorithms have been used to estimate respiratory rate (RR) from Photoplethysmography (PPG) recently. However, the accuracy and time consumption are still a challenging issue. In this paper, we propose a novel algorithm for RR estimation using Joint Sparse Signal Reconstruction (JSSR) based on Regularized Sparsity Adaptive Matching Pursuit (RSAMP) in a real-time fashion. The algorithm has been tested on Capnobase dataset and the results showed that the mean absolute error (MAE) and root mean squared error between estimates and references are 1.09 breaths per minute (bpm) and 2.44 bpm, respectively. And our method only costs 0.54 seconds for calculation.","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":"29 1","pages":"2849-2852"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fast Respiratory Rate Estimation Method using Joint Sparse Signal Reconstruction based on Regularized Sparsity Adaptive Matching Pursuit.\",\"authors\":\"Zhongyi Han, Qun Wang, Liang Yue, Zhiwen Liu\",\"doi\":\"10.1109/EMBC.2018.8512897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many algorithms have been used to estimate respiratory rate (RR) from Photoplethysmography (PPG) recently. However, the accuracy and time consumption are still a challenging issue. In this paper, we propose a novel algorithm for RR estimation using Joint Sparse Signal Reconstruction (JSSR) based on Regularized Sparsity Adaptive Matching Pursuit (RSAMP) in a real-time fashion. The algorithm has been tested on Capnobase dataset and the results showed that the mean absolute error (MAE) and root mean squared error between estimates and references are 1.09 breaths per minute (bpm) and 2.44 bpm, respectively. And our method only costs 0.54 seconds for calculation.\",\"PeriodicalId\":72689,\"journal\":{\"name\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"volume\":\"29 1\",\"pages\":\"2849-2852\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC.2018.8512897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC.2018.8512897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fast Respiratory Rate Estimation Method using Joint Sparse Signal Reconstruction based on Regularized Sparsity Adaptive Matching Pursuit.
Many algorithms have been used to estimate respiratory rate (RR) from Photoplethysmography (PPG) recently. However, the accuracy and time consumption are still a challenging issue. In this paper, we propose a novel algorithm for RR estimation using Joint Sparse Signal Reconstruction (JSSR) based on Regularized Sparsity Adaptive Matching Pursuit (RSAMP) in a real-time fashion. The algorithm has been tested on Capnobase dataset and the results showed that the mean absolute error (MAE) and root mean squared error between estimates and references are 1.09 breaths per minute (bpm) and 2.44 bpm, respectively. And our method only costs 0.54 seconds for calculation.