{"title":"肝小叶功能的计算方法及灌注模拟","authors":"Tim Ricken, Lena Lambers","doi":"10.1002/gamm.201900016","DOIUrl":null,"url":null,"abstract":"<p>In recent years computational models have become more important for simulating hepatic processes and investigating liver diseases in silico and so various liver models have been published. The complex behavior of biological tissue with its hierarchical structure as well as the blood perfusion through the organ have been described using different approaches and numerical techniques. This paper shows and compares numerical approaches for function and perfusion simulation recently published and compares them with a multiscale function-perfusion model using the extended theory of porous media. We focus on the description of blood perfusion and liver tissue, but also on the simulation of liver diseases or the zonation of processes in the liver. Furthermore, the selected geometry is taken into account.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"42 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.201900016","citationCount":"5","resultStr":"{\"title\":\"On computational approaches of liver lobule function and perfusion simulation\",\"authors\":\"Tim Ricken, Lena Lambers\",\"doi\":\"10.1002/gamm.201900016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years computational models have become more important for simulating hepatic processes and investigating liver diseases in silico and so various liver models have been published. The complex behavior of biological tissue with its hierarchical structure as well as the blood perfusion through the organ have been described using different approaches and numerical techniques. This paper shows and compares numerical approaches for function and perfusion simulation recently published and compares them with a multiscale function-perfusion model using the extended theory of porous media. We focus on the description of blood perfusion and liver tissue, but also on the simulation of liver diseases or the zonation of processes in the liver. Furthermore, the selected geometry is taken into account.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"42 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/gamm.201900016\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.201900016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.201900016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
On computational approaches of liver lobule function and perfusion simulation
In recent years computational models have become more important for simulating hepatic processes and investigating liver diseases in silico and so various liver models have been published. The complex behavior of biological tissue with its hierarchical structure as well as the blood perfusion through the organ have been described using different approaches and numerical techniques. This paper shows and compares numerical approaches for function and perfusion simulation recently published and compares them with a multiscale function-perfusion model using the extended theory of porous media. We focus on the description of blood perfusion and liver tissue, but also on the simulation of liver diseases or the zonation of processes in the liver. Furthermore, the selected geometry is taken into account.