全向轮式移动机器人接球和主动立体视觉

Sho-Tsung Kao, Yi Wang, Ming-Tzu Ho
{"title":"全向轮式移动机器人接球和主动立体视觉","authors":"Sho-Tsung Kao, Yi Wang, Ming-Tzu Ho","doi":"10.1109/ISIE.2017.8001395","DOIUrl":null,"url":null,"abstract":"This paper considers the design and implementation of a visual servo system for catching a flying ball using an active stereo vision system, a static vision system, and an omni-directional wheeled mobile robot. These multi-camera vision systems are used to track the flying ball and guide the omni-directional mobile wheeled robot to catch it. The dynamic model of a flying ball and Kalman filter are used to mitigate measurement noise, estimate the position and velocity of the flying ball, and predict its future trajectory. The mathematical model of the omni-directional mobile robot is derived to facilitate the control design. Trajectory tracking control of the mobile robot is done by combining feedback linearization and proportional-integral-derivative (PID) control. Finally, the experimental setup is constructed, and control laws and image processing algorithms are implemented through digital signal processors. The effectiveness of the designed system is validated through experimental studies. The results show that the developed vision systems are able to track a flying ball and guide and navigate the robot to catch it.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"55 1","pages":"1073-1080"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Ball catching with omni-directional wheeled mobile robot and active stereo vision\",\"authors\":\"Sho-Tsung Kao, Yi Wang, Ming-Tzu Ho\",\"doi\":\"10.1109/ISIE.2017.8001395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the design and implementation of a visual servo system for catching a flying ball using an active stereo vision system, a static vision system, and an omni-directional wheeled mobile robot. These multi-camera vision systems are used to track the flying ball and guide the omni-directional mobile wheeled robot to catch it. The dynamic model of a flying ball and Kalman filter are used to mitigate measurement noise, estimate the position and velocity of the flying ball, and predict its future trajectory. The mathematical model of the omni-directional mobile robot is derived to facilitate the control design. Trajectory tracking control of the mobile robot is done by combining feedback linearization and proportional-integral-derivative (PID) control. Finally, the experimental setup is constructed, and control laws and image processing algorithms are implemented through digital signal processors. The effectiveness of the designed system is validated through experimental studies. The results show that the developed vision systems are able to track a flying ball and guide and navigate the robot to catch it.\",\"PeriodicalId\":6597,\"journal\":{\"name\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"volume\":\"55 1\",\"pages\":\"1073-1080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2017.8001395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究利用主动立体视觉系统、静态视觉系统和全向轮式移动机器人,设计并实现了一种用于接球的视觉伺服系统。这些多摄像头视觉系统用于跟踪飞行球并引导全向移动轮式机器人捕捉球。利用飞行球的动力学模型和卡尔曼滤波来减轻测量噪声,估计飞行球的位置和速度,并预测其未来的轨迹。建立了全向移动机器人的数学模型,便于控制设计。将反馈线性化与比例积分导数(PID)控制相结合,实现了移动机器人的轨迹跟踪控制。最后,搭建了实验装置,并通过数字信号处理器实现了控制律和图像处理算法。通过实验验证了所设计系统的有效性。结果表明,开发的视觉系统能够跟踪飞行的球,并引导和导航机器人捕捉它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ball catching with omni-directional wheeled mobile robot and active stereo vision
This paper considers the design and implementation of a visual servo system for catching a flying ball using an active stereo vision system, a static vision system, and an omni-directional wheeled mobile robot. These multi-camera vision systems are used to track the flying ball and guide the omni-directional mobile wheeled robot to catch it. The dynamic model of a flying ball and Kalman filter are used to mitigate measurement noise, estimate the position and velocity of the flying ball, and predict its future trajectory. The mathematical model of the omni-directional mobile robot is derived to facilitate the control design. Trajectory tracking control of the mobile robot is done by combining feedback linearization and proportional-integral-derivative (PID) control. Finally, the experimental setup is constructed, and control laws and image processing algorithms are implemented through digital signal processors. The effectiveness of the designed system is validated through experimental studies. The results show that the developed vision systems are able to track a flying ball and guide and navigate the robot to catch it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
32nd IEEE International Symposium on Industrial Electronics, ISIE 2023, Helsinki, Finland, June 19-21, 2023 Fuel Cell prognosis using particle filter: application to the automotive sector Bi-Level Distribution Network Planning Integrated with Energy Storage to PV-Connected Network Distributed adaptive anti-windup consensus tracking of networked systems with switching topologies Deep Belief Network and Dempster-Shafer Evidence Theory for Bearing Fault Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1