{"title":"二维电子气体作为低损耗双曲型超材料的基础","authors":"M. Mastro","doi":"10.1149/2.0101711jss","DOIUrl":null,"url":null,"abstract":"The implementation of hyperbolic metamaterials as component in optical waveguides, semiconductor light emitters and solar cells has been limited by the inherent loss in the metallic layers. The features of a hyperbolic metamaterial arise by the presence of alternating metal and a dielectric layers. This work proposes that the deleterious loss characteristic of metal-based hyperbolic metamaterials can be minimized by employing a III-nitride superlattice wherein a two-dimensional electron gas (2DEG) functions as the metallic layer.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional Electron Gas as a Basis for Low-Loss Hyperbolic Metamaterials\",\"authors\":\"M. Mastro\",\"doi\":\"10.1149/2.0101711jss\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of hyperbolic metamaterials as component in optical waveguides, semiconductor light emitters and solar cells has been limited by the inherent loss in the metallic layers. The features of a hyperbolic metamaterial arise by the presence of alternating metal and a dielectric layers. This work proposes that the deleterious loss characteristic of metal-based hyperbolic metamaterials can be minimized by employing a III-nitride superlattice wherein a two-dimensional electron gas (2DEG) functions as the metallic layer.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.0101711jss\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0101711jss","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two-Dimensional Electron Gas as a Basis for Low-Loss Hyperbolic Metamaterials
The implementation of hyperbolic metamaterials as component in optical waveguides, semiconductor light emitters and solar cells has been limited by the inherent loss in the metallic layers. The features of a hyperbolic metamaterial arise by the presence of alternating metal and a dielectric layers. This work proposes that the deleterious loss characteristic of metal-based hyperbolic metamaterials can be minimized by employing a III-nitride superlattice wherein a two-dimensional electron gas (2DEG) functions as the metallic layer.