{"title":"利用深度学习技术识别异常鸡细胞","authors":"Natinai Jinsakul, Cheng-Fa Tsai, Chia-En Tsai","doi":"10.6688/JISE.202107_37(4).0006","DOIUrl":null,"url":null,"abstract":"Chicken cell abnormal identification by manual method that clearly lacks speed and accuracy. However, the success of deep learning techniques from the convolutional neural network (CNN), it may be providing solutions to cell biology laboratory tasks. This paper collected the novel chicken cell microscopic image datasets for training the different kinds of CNN models and optimizers to find promising applications that might be developed. The top model indicates that ResNet34 with Adam optimizer achieved training accuracy of 100%, testing accuracy of 98.14%, and the lower time on the outstanding confusion matrix. In addition, the validation result represented correct identification, guaranteeing by experts. This study shows the potential method to be improved to an application of identification systems in the actual animal and biology laboratories.","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":"10 1","pages":"827-838"},"PeriodicalIF":0.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Chicken Cell Identification Using Deep Learning Techniques\",\"authors\":\"Natinai Jinsakul, Cheng-Fa Tsai, Chia-En Tsai\",\"doi\":\"10.6688/JISE.202107_37(4).0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chicken cell abnormal identification by manual method that clearly lacks speed and accuracy. However, the success of deep learning techniques from the convolutional neural network (CNN), it may be providing solutions to cell biology laboratory tasks. This paper collected the novel chicken cell microscopic image datasets for training the different kinds of CNN models and optimizers to find promising applications that might be developed. The top model indicates that ResNet34 with Adam optimizer achieved training accuracy of 100%, testing accuracy of 98.14%, and the lower time on the outstanding confusion matrix. In addition, the validation result represented correct identification, guaranteeing by experts. This study shows the potential method to be improved to an application of identification systems in the actual animal and biology laboratories.\",\"PeriodicalId\":50177,\"journal\":{\"name\":\"Journal of Information Science and Engineering\",\"volume\":\"10 1\",\"pages\":\"827-838\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.6688/JISE.202107_37(4).0006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/JISE.202107_37(4).0006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Anomaly Chicken Cell Identification Using Deep Learning Techniques
Chicken cell abnormal identification by manual method that clearly lacks speed and accuracy. However, the success of deep learning techniques from the convolutional neural network (CNN), it may be providing solutions to cell biology laboratory tasks. This paper collected the novel chicken cell microscopic image datasets for training the different kinds of CNN models and optimizers to find promising applications that might be developed. The top model indicates that ResNet34 with Adam optimizer achieved training accuracy of 100%, testing accuracy of 98.14%, and the lower time on the outstanding confusion matrix. In addition, the validation result represented correct identification, guaranteeing by experts. This study shows the potential method to be improved to an application of identification systems in the actual animal and biology laboratories.
期刊介绍:
The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.