模糊系统辨识的知识有界最小二乘法

Xiao-Jun Zeng, M. Singh
{"title":"模糊系统辨识的知识有界最小二乘法","authors":"Xiao-Jun Zeng, M. Singh","doi":"10.1109/TSMCC.2003.809347","DOIUrl":null,"url":null,"abstract":"This paper presents the knowledge bounded least squares method that uses both linguistic information (i.e., human knowledge and experience) and numerical data to identify fuzzy models. Based on the concept of fuzzy interval systems, the basic idea of this method is: first, to utilize all the available linguistic information to obtain a fuzzy interval system and then use the obtained fuzzy interval system to give the admissible model set (i.e., the set of all fuzzy models which are acceptable and reasonable from the point of view of linguistic information); second, to find a fuzzy model in the admissible fuzzy model set which best fits the available numerical data. It is shown that such a fuzzy model can be obtained by a quadratic programming approach. By comparing this method with the least squares method, it is proved that the fuzzy model obtained by the proposed method fits the real model better than the fuzzy model obtained by the least squares method.","PeriodicalId":55005,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","volume":"46 1","pages":"24-32"},"PeriodicalIF":0.0000,"publicationDate":"2003-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Knowledge bounded least squares method for the identification of fuzzy systems\",\"authors\":\"Xiao-Jun Zeng, M. Singh\",\"doi\":\"10.1109/TSMCC.2003.809347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the knowledge bounded least squares method that uses both linguistic information (i.e., human knowledge and experience) and numerical data to identify fuzzy models. Based on the concept of fuzzy interval systems, the basic idea of this method is: first, to utilize all the available linguistic information to obtain a fuzzy interval system and then use the obtained fuzzy interval system to give the admissible model set (i.e., the set of all fuzzy models which are acceptable and reasonable from the point of view of linguistic information); second, to find a fuzzy model in the admissible fuzzy model set which best fits the available numerical data. It is shown that such a fuzzy model can be obtained by a quadratic programming approach. By comparing this method with the least squares method, it is proved that the fuzzy model obtained by the proposed method fits the real model better than the fuzzy model obtained by the least squares method.\",\"PeriodicalId\":55005,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re\",\"volume\":\"46 1\",\"pages\":\"24-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMCC.2003.809347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCC.2003.809347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文提出了利用语言信息(即人类的知识和经验)和数值数据来识别模糊模型的知识有界最小二乘法。该方法基于模糊区间系统的概念,其基本思想是:首先利用所有可用的语言信息得到一个模糊区间系统,然后利用得到的模糊区间系统给出可接受的模型集(即从语言信息的角度来看,所有可接受的、合理的模糊模型的集合);其次,在允许的模糊模型集中找到最适合现有数值数据的模糊模型。结果表明,这种模糊模型可以用二次规划方法得到。通过与最小二乘法的比较,证明了该方法得到的模糊模型比最小二乘法得到的模糊模型更能拟合实际模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge bounded least squares method for the identification of fuzzy systems
This paper presents the knowledge bounded least squares method that uses both linguistic information (i.e., human knowledge and experience) and numerical data to identify fuzzy models. Based on the concept of fuzzy interval systems, the basic idea of this method is: first, to utilize all the available linguistic information to obtain a fuzzy interval system and then use the obtained fuzzy interval system to give the admissible model set (i.e., the set of all fuzzy models which are acceptable and reasonable from the point of view of linguistic information); second, to find a fuzzy model in the admissible fuzzy model set which best fits the available numerical data. It is shown that such a fuzzy model can be obtained by a quadratic programming approach. By comparing this method with the least squares method, it is proved that the fuzzy model obtained by the proposed method fits the real model better than the fuzzy model obtained by the least squares method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
3 months
期刊最新文献
System Architectures Enabling Reconfigurable Laboratory-Automation Systems Neural-Network-Based Path Planning for a Multirobot System With Moving Obstacles A Divide-and-Conquer Strategy to Deadlock Prevention in Flexible Manufacturing Systems Comments on "An Adaptive Multimodal Biometric Management Algorithm" Guest Editorial Foreword to the Special Issue on Intelligent Computation for Bioinformatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1