有限状态马尔可夫链平均性能优化的迭代算法

Ryusei Fujita, K. Iwata, Hirosuke Yamamoto
{"title":"有限状态马尔可夫链平均性能优化的迭代算法","authors":"Ryusei Fujita, K. Iwata, Hirosuke Yamamoto","doi":"10.1109/ISIT.2019.8849856","DOIUrl":null,"url":null,"abstract":"We consider Markov chains with finite states, which have unique stationary distributions and satisfy the following conditions I)–III). I) Each state si has its own discrete parameter ti. II) Each state si has a local performance function f(ti). III) Each state si has a transition probability function pi, j(ti) from state si to state sj. In this paper, we give an iterative method to optimize the global average performance of the above Markov chains, which have unique stationary distributions for all sets of the parameters. This method is a generalization of the iterative method to construct the optimal AIFV-m code, which was proposed in our previous paper. But in this paper, the following two points are further refined besides the generalization. (i) We clarify the condition such that the iterative method always terminates and gives correct results although the iterative method is a kind of Las Vegas algorithm. (ii) We provide a closed-form expression of coefficients to solve the local optimization problem of each state.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"28 1","pages":"1902-1906"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Iterative Algorithm to Optimize the Average Performance of Markov Chains with Finite States\",\"authors\":\"Ryusei Fujita, K. Iwata, Hirosuke Yamamoto\",\"doi\":\"10.1109/ISIT.2019.8849856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Markov chains with finite states, which have unique stationary distributions and satisfy the following conditions I)–III). I) Each state si has its own discrete parameter ti. II) Each state si has a local performance function f(ti). III) Each state si has a transition probability function pi, j(ti) from state si to state sj. In this paper, we give an iterative method to optimize the global average performance of the above Markov chains, which have unique stationary distributions for all sets of the parameters. This method is a generalization of the iterative method to construct the optimal AIFV-m code, which was proposed in our previous paper. But in this paper, the following two points are further refined besides the generalization. (i) We clarify the condition such that the iterative method always terminates and gives correct results although the iterative method is a kind of Las Vegas algorithm. (ii) We provide a closed-form expression of coefficients to solve the local optimization problem of each state.\",\"PeriodicalId\":6708,\"journal\":{\"name\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"28 1\",\"pages\":\"1902-1906\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2019.8849856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们考虑具有唯一平稳分布的有限状态马尔可夫链,它满足以下条件I) -III)。I)每个状态si都有自己的离散参数ti。II)每个状态si都有一个局部性能函数f(ti)。III)每个状态si都有一个从状态si到状态sj的转移概率函数pi, j(ti)。在本文中,我们给出了一种迭代方法来优化上述马尔可夫链的全局平均性能,这些马尔可夫链对所有参数集都具有唯一平稳分布。该方法是我们在上一篇文章中提出的构造最优AIFV-m码的迭代方法的推广。但本文在概括的基础上,进一步细化了以下两点。(i)澄清了迭代法虽然是一种拉斯维加斯算法,但总是终止并给出正确结果的条件。(ii)给出了求解各状态局部优化问题的系数的封闭表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Iterative Algorithm to Optimize the Average Performance of Markov Chains with Finite States
We consider Markov chains with finite states, which have unique stationary distributions and satisfy the following conditions I)–III). I) Each state si has its own discrete parameter ti. II) Each state si has a local performance function f(ti). III) Each state si has a transition probability function pi, j(ti) from state si to state sj. In this paper, we give an iterative method to optimize the global average performance of the above Markov chains, which have unique stationary distributions for all sets of the parameters. This method is a generalization of the iterative method to construct the optimal AIFV-m code, which was proposed in our previous paper. But in this paper, the following two points are further refined besides the generalization. (i) We clarify the condition such that the iterative method always terminates and gives correct results although the iterative method is a kind of Las Vegas algorithm. (ii) We provide a closed-form expression of coefficients to solve the local optimization problem of each state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gambling and Rényi Divergence Irregular Product Coded Computation for High-Dimensional Matrix Multiplication Error Exponents in Distributed Hypothesis Testing of Correlations Pareto Optimal Schemes in Coded Caching Constrained de Bruijn Codes and their Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1