具有亲子信息的匿名数据集中的再识别风险

Revekka Kalli, M. Anagnostou
{"title":"具有亲子信息的匿名数据集中的再识别风险","authors":"Revekka Kalli, M. Anagnostou","doi":"10.1109/SEEDA-CECNSM53056.2021.9566230","DOIUrl":null,"url":null,"abstract":"We explore the risk of re-identification in anonymized data sets that preserve genealogical information (i.e. parent-child links). We consider attacks based on the number of children of an individual. We use part of a well known data set in our experiments, which show that a substantial part of the population involved in the set can be identified, even if additional anonymity protection measures based on graph trimming are taken. We have also found that the risk quickly increases with generatiou depth.","PeriodicalId":68279,"journal":{"name":"计算机工程与设计","volume":"27 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re-Identification risk in anonymized data sets with parent-child information\",\"authors\":\"Revekka Kalli, M. Anagnostou\",\"doi\":\"10.1109/SEEDA-CECNSM53056.2021.9566230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the risk of re-identification in anonymized data sets that preserve genealogical information (i.e. parent-child links). We consider attacks based on the number of children of an individual. We use part of a well known data set in our experiments, which show that a substantial part of the population involved in the set can be identified, even if additional anonymity protection measures based on graph trimming are taken. We have also found that the risk quickly increases with generatiou depth.\",\"PeriodicalId\":68279,\"journal\":{\"name\":\"计算机工程与设计\",\"volume\":\"27 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机工程与设计\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机工程与设计","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们探索在保留家谱信息(即亲子链接)的匿名数据集中重新识别的风险。我们根据一个人的孩子的数量来考虑攻击。我们在实验中使用了已知数据集的一部分,这表明即使采取了基于图修剪的额外匿名保护措施,也可以识别出该集合中涉及的大部分人口。我们还发现,风险随着发电深度的增加而迅速增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Re-Identification risk in anonymized data sets with parent-child information
We explore the risk of re-identification in anonymized data sets that preserve genealogical information (i.e. parent-child links). We consider attacks based on the number of children of an individual. We use part of a well known data set in our experiments, which show that a substantial part of the population involved in the set can be identified, even if additional anonymity protection measures based on graph trimming are taken. We have also found that the risk quickly increases with generatiou depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20353
期刊介绍: Computer Engineering and Design is supervised by China Aerospace Science and Industry Corporation and sponsored by the 706th Institute of the Second Academy of China Aerospace Science and Industry Corporation. It was founded in 1980. The purpose of the journal is to disseminate new technologies and promote academic exchanges. Since its inception, it has adhered to the principle of combining depth and breadth, theory and application, and focused on reporting cutting-edge and hot computer technologies. The journal accepts academic papers with innovative and independent academic insights, including papers on fund projects, award-winning research papers, outstanding papers at academic conferences, doctoral and master's theses, etc.
期刊最新文献
Open weather data evaluation for crop irrigation prediction mechanisms in the AUGEIAS project A bi-directional shortest path calculation speed up technique for RDBMS Scavenging PyPi for VLSI Packages Environmental Awareness in Preschool Education via Educational Robotics and STEAM Education A TinyML-based Alcohol Impairment Detection System For Vehicle Accident Prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1